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The dissociation of acids in aqueous environments at low temperatures in the presence of a limited
amount of water is underlying a wealth of processes from atmospheric to interstellar science. For the
paradigmatic case of HClðH2OÞn clusters, our extensive ab initio path integral simulations quantify in
terms of free energy differences and barriers that n ¼ 4 water molecules are indeed required to dissociate
HCl at low temperatures. Increasing the temperature, however, reverses the process and thus counteracts
dissociation by fluctuation-driven recombination. The size of the electric dipole moment is shown to not
correlate with the acid being in its dissociated or molecular state, thus rendering its measurement as a
function of n unable to detect the dissociation transition.
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The dissociation of acids, thus producing protons and the
counter-anions, is an elementary process that is required to
enable many subsequent chemical reactions. For instance, it
is a key player in the complex chemistry taking place in the
atmosphere of Earth [1–5] or other planets [6], either within
water droplets [7–13] or on ice surfaces [1,2,14–16].
Moreover, acids also play a prominent role in reactive
processes within the interstellar medium [16,17]. Yet, the
fundamental question of how many water molecules are
required for the dissociation of an acid molecule is both
long-standing and controversial [18–27]. In particular, HCl
interacting with H2O molecules serves as a paradigmatic
showcase [12,18–42]. HCl is known to be a strong acid that
is essentially fully dissociated in bulk water, thus yielding
solvated Cl− and Hþ ions. In the opposite limit, it is well
established thatHCl interactingwith a singlewatermolecule
does not dissociate but forms the HClðH2OÞ heterodimer
instead. Given these limiting scenarios, it is obvious that a
certain number n of water molecules must be necessary in
order to allow the HCl molecule to split into its ionic
components. Upon successively adding water molecules to
HCl in a superfluid helium matrix, convincing evidence has
been given that an ion pair, and thus the dissociated acid
molecule, can be stabilized at low temperatures using a
minimum number of only four H2O molecules [20,24,25].
However, the issue of acid dissociation in HCl-water
clusters remains experimentally controversial [21–23,25].
Unfortunately, acid dissociation is also theoretically intri-
cate in view of significant quantum and thermal fluctuations
effects which can shift dissociation equilibria [33,34,38]
combined with difficulties to predictively compute vibra-
tional frequencies [12,31,40,41] as previously used exper-
imentally to monitor acid dissociation.
For these reasons, a recent publication [26] appeared

particularly promising since the electric dipole moment
of DClðH2OÞn clusters has been measured by the beam

deflection method as a function of cluster size from n ¼ 3
to 8, thus contributing a novel observable that might settle
the case. In fact, the assumption that a microsolvated
charge-separated species implies a higher dipole moment
of the whole cluster has already been used in the literature
for a long time [43–47]. Based on such dipole measure-
ments, it has been concluded in the abstract of Ref. 26:
“There is evidence for a noticeable rise in the dipole
moment occurring at n ≈ 5–6. This size is consistent with
predictions for the onset of ionic dissociation.”
The aim of this work is to provide solid evidence that the

rise in the dipole moment in HClðH2OÞn clusters is not an
indicator that allows one to probe the onset of ionic
dissociation. Our data even disclose that the magnitude
of the electric dipole moment of these clusters does not
correlate at all with the microsolvated acid being disso-
ciated or not. Moreover, upon probing the temperature
dependence of acid dissociation for the critical n ¼ 4 case,
we discover that increasing thermal fluctuations system-
atically counteracts dissociation. Given four H2O mole-
cules, HCl strongly prefers indeed to be dissociated into an
ion pair in the realm of low temperatures [20,24,25],
whereas an undissociated molecular cluster structure is
stabilized at sufficiently high temperatures as shown in
what follows.
In order to achieve our goal, large-scale ab initio path

integral simulations [48] have been carried out, thus includ-
ing nuclear quantum effects at finite temperatures. These
simulations of HClðH2OÞn from n ¼ 1 up to 8 using several
isomers have been carried out at T ¼ 200 K in order to
match the experimental conditions of Ref. [26] using our
well-tested and validated approach [31,33,34,38] (i.e., all-
electron Becke-Lee-Yang-Parr (BLYP) calculations using
the aug–cc–pVTZ basis set andP ¼ 12Trotter beads within
the CP2k software package [49]). Additional benchmarks
compiled in the SupplementalMaterial [50] confirm that our
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approach is also valid to compute the dipole moments. In an
effort to quantify temperature effects on the dissociation
process, the stability of dissociated versus undissociated
clusters is quantified by computing quantum and classical
free energy profiles of the n ¼ 4 species at 50, 100, 200, and
300 K; see the Supplemental Material [50] for details. Last
but not least, in addition to computing the dipole expectation
values we also optimized more than 2500 structures for
n ¼ 1;…; 8 to scrutinize possible correlations of the cluster
dipole moment and the dissociation state of HCl.
The finite-temperature expectation values of the dipole

operator hμi of the investigated HClðH2OÞn clusters at
200 K are compiled in Fig. 1 as a function of n together
with dipole moments μ of optimized structures. As
expected, for small clusters with up to three water mole-
cules only undissociated structures are found starting at
n ¼ 1 with the HClðH2OÞ heterodimer. Dissociated species
become available only for clusters containing four or more
water molecules. What is immediately apparent from Fig. 1
is that clusters containing undissociated and dissociated
HCl cannot be distinguished based on the magnitude of
their electric dipole moments. The lowest-energy dissoci-
ated n ¼ 7 case provides a particularly stunning example:
the huge dipole created by the separated charges is
essentially fully quenched by an arrangement of the water
molecules such that the vector sum of their dipoles largely
compensates the former; see Supplemental Material [50].
Apart from that illustrative case, the undissociated clusters
for n > 4 even display a tendency to possess larger dipoles
compared to the corresponding dissociated ones, which is
nicely revealed at the level of the full distribution functions
at 200 K as presented in Fig. 2. When it comes to the impact
of quantum fluctuations on the dipole moments of the static
structures, it is not only stunning to see that the quantum

averages hμi at 200 K deviate strongly from the corre-
sponding equilibrium dipole moments μ, but also that
fluctuations can both increase and decrease it. The clue
comes from the very broad dipole distribution functions in
Fig. 2, which moreover significantly overlap. Thus, adding
their standard deviations to the averages in Fig. 1 leads to a
broad “fluctuation window” (shaded area) that covers the
total variations of the mean values as a function of n.
The n ¼ 4 cluster turns out to be particularly puzzling.

For this specific cluster size, our ab initio path integral
simulations confirm the previous finding [26] of an
interconversion between a dissociated and undissociated
form of HClðH2OÞ4 at 200 K. The dissociated species
represents the long-known solvent-shared ion pair (SIP),
whereas the undissociated species is identified here to
correspond to the partially aggregated (PA) structure
[20,24]. The aggregation-induced dissociation mechanism
that leads to dissociation of HCl upon successively adding
four H2O molecules in superfluid helium clusters implies
the transient formation of a distinct undissociated structure
being the PA species [20,24]. In this species, the fourth
water molecule accepts a hydrogen bond from a water
molecule within the cyclic HClðH2OÞ3 (quasiplanar undis-
sociated) cluster; see Table I in the Supplemental Material
[50]. Once PA is formed, the dangling water eventually
reaches the HCl molecule in the ring as a result of large-
amplitude motion that readily triggers the dissociation
process to yield the SIP species [24]. Upon ion pair
formation, the Cl− and the H3Oþ ions get separated by a
minimal layer of three water molecules via a concerted
double proton transfer process (see Fig. 11 in Ref. [38]).
Thus, PA and SIP are the relevant species that are involved in
the interconversion process, rather than the global undis-
sociated (UD) and dissociated (SIP) minima [27] being
separated by high-energy barriers [20,24].
At variance with the n > 4 clusters, for n ¼ 4 the largest

dipole moments are found for dissociated contact ion pairs
(CIP), hμi≈ 4.4D, whereas the lowest ones correspond to

FIG. 1. Quantum-statistical expectation values hμi of the dipole
moment operator at 200 K (triangles) and equilibrium dipole
moments μ from static optimization (circles) for HClðH2OÞn,
n ¼ 1;…; 8. Filled and open symbols refer to the respective
dissociated and undissociated species. The green and red areas
correspond to the standard deviation for undissociated and
dissociated clusters, respectively, according to the underlying
probability distribution functions; see Fig. 2.
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FIG. 2. Quantum-statistical distribution functions PðμÞ of the
dipole moment operator for HClðH2OÞn, n ¼ 1;…; 8 at 200 K.
The green solid and red dashed lines correspond to undissociated
and dissociated clusters, respectively; thin (thick) green and red
lines correspond to PA (UD) and SIP (CIP) species, respectively,
for n ¼ 4.
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undissociated quasiplanar ring (UD) species with hμi≈
3.0D. Moreover, the undissociated PA and the dissociated
SIPC3 isomers share essentially the same dipole moment in
between these limits, namely hμi ≈ 3.7D. All this strength-
ens our conclusion that the dipolemoment is not an indicator
of HCl-water clusters being in an undissociated or disso-
ciated state. In particular, themeasured [26] rise in the electric
dipole from n ¼ 5 to 6 water molecules does not challenge
the conclusion [20,24,25] that n ¼ 4 is the smallest HCl-
water cluster which supports an ion pair.
Next, independent analysis based on a large ensemble of

optimized HClðH2OÞn structures in Fig. 3 supports this
finding by showing that there is no useful correlation
between the magnitude of the total dipole moment μ of the
entire HClðH2OÞn cluster and the microsolvated HCl
molecule being dissociated or not. As one can see, the
cluster dipole moments span about the same range from
close to zero until roughly 10 D irrespective of the H � � �Cl
distance being below ≈1.4 Å (corresponding to an undis-
sociated HCl molecule) or above ≈1.6 Å (indicating the
ionized state). Therefore, the magnitude μ of the dipole
moment of HClðH2OÞn clusters in the investigated size
range is unrelated to the dissociation state of the micro-
solvated HCl molecule.
In view of the particular complexity of the HClðH2OÞ4

cluster, for which interconversion between undissociated
and dissociated structures at 200 K has been reported [26],
we additionally computed both classical and quantum free
energy profiles in order to fully quantify relative cluster
stabilities and heights of the separating energetic barrier as

a function of temperature. In Fig. 4, these free energy
landscapes are depicted as a function of the Cl � � �O
coordination number, CNCl���O serving as an order param-
eter [24], where minima around 1.85 and 2.80 correspond
to the undissociated PA and dissociated SIP structures,
respectively. In the low temperature regime, the free energy
profiles clearly feature a global minimum that corresponds
to the SIP conformer independently from a classical or
quantum treatment of the nuclei in agreement with previous
findings [20,24]. Second, the barrier that separates the PA
local minimum from the dissociated preferred structure is
small. The resulting shallowness of the PA minimum
substantially supports the aggregation-induced dissociation
mechanism disclosed in Refs. [20,24].
In stark contrast to the low temperature scenario, the

n ¼ 4 cluster offers a much richer behavior as temperature
rises. First of all, regarding the free energy differences
between the PA and SIP minima, it can be extracted from
Fig. 4 that the relative stability of these undissociated and
dissociated structures, respectively, experiences a drastic
change at around 200 K. Below this crossover temperature
the system behaves qualitatively as just described; i.e., SIP
remains energetically preferred. At higher temperatures, on
the contrary, the SIP minimum along the order parameter
completely disappears whereas PA remains a stable species.
We note in passing that quantum chemistry approaches [27]
that consider harmonic zero-point energies and rigid
rotor-harmonic oscillator thermal corrections based on
normal modes analysis of optimized equilibrium structures
and thus on local minima of the potential energy surface
cannot predict the qualitative topology change of the free
energy landscape as observed in the present ab initio path
integral simulations; estimating similarly the temperature
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FIG. 3. Dipole moments μ of HClðH2OÞn clusters, n ¼ 1;…; 8,
obtained from more than 2500 optimized structures versus
the shortest H � � �Cl distance r of the respective structure, where
r < 1.4 Å and r > 1.6 Å corresponds to undissociated and
dissociated HCl molecules, respectively.

FIG. 4. Classical (left) and quantum (right) free energy profiles
connecting the partially aggregated (PA) undissociated to the
fully dissociated solvent-shared ion pair (SIP) species for the
HClðH2OÞ4 cluster at 50, 100, 200, and 300 K. The order
parameter is the coordination number of the chlorine atom with
respect to the oxygen atoms (see text).
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dependence of the average dipole moment based on local
minima is also limited if species become unstable. Thus,
fluctuation effects greatly destabilize the ion pair with
respect to the undissociated species despite the correspond-
ing SIP structure, of course, remains the global minimum of
the underlying potential energy surface.
Given that intriguing temperature dependence for the

particularly important n ¼ 4 case, we finally come back to
the behavior of the electric dipole moment, now as a
function of temperature. To this end, we constrain the order
parameter to those values that definitely correspond to SIP
and PA structures, thus using CNCl���O ¼ 2.80 and 1.85,
respectively, and compute the resulting quantum-statistical
distributions of the dipole operator at the different temper-
atures; see Fig. 2 in the Supplemental Material [50].
Corroborating furthermore our previous conclusions, it is
confirmed that neither the expectation value of the dipole
moment operator hμi nor its full quantum distribution
function PðμÞ can be used to distinguish dissociated from
undissociated clusters; note that the structures sampled with
CNCl���O ¼ 2.80 still correspond to proper SIP species even
at 300 K. The same conclusion is reached upon distance-
resolving these distributions akin to Fig. 3; see Fig. 3 in the
Supplemental Material [50]. It therefore occurs to us that
vibrational spectroscopy should still be the most reliable
experimental tool used to distinguish between microsol-
vated HClðH2OÞn clusters that either host an intact HCl
molecule or an Cl−-H3Oþ ion pair if combined with
accurate computations [12,37,39,40].
We conclude that our results unequivocally demonstrate

that the magnitude of the total electric dipole moment of
HClðH2OÞn clusters, at least up to n ¼ 8, does not probe
the dissociation state of the microsolvated acid. Depending
on the species, the water molecules might arrange them-
selves such that their effective molecular dipole moments
largely compensate the huge dipole that is generated by the
separated charges due to Cl− and H3Oþ. This is reminiscent
to dielectric shielding, well known from aqueous bulk
electrolyte solutions, now in the realm of microsolvating
ion pairs. Our finding implies the far-reaching conclusion
that beam deflection cannot be used to probe ion pair
formation within clusters—contrary to long-standing
belief. For the distinct n ¼ 4 case, our free energy calcu-
lations, which include thermal activation and nuclear
quantum effects, provide further support that the fully
dissociated solvent-shared ion pair is the preferred low-
temperature structure [20] and thus the smallest droplet of
acid [20,32]. Unexpectedly, however, we discovered a
temperature-driven recombination transition in the sense
that simply heating the preferred dissociated ion-paired
low-temperature structure of HClðH2OÞ4 reverses the acid
dissociation process. Given the shape of the free energy
profile, this “association” reaction becomes eventually
barrierless, whereas an intermediate temperature regime
is predicted where both dissociated and undissociated

species coexist in thermal equilibrium. The fundamental
nature of these findings should provide plenty of stimula-
tion to look more broadly into temperature-driven disso-
ciation versus association reactions of strong and also
weak acids in microsolvation environments. Beyond simple
acids, research into zwitterionization processes of amino
acids or even short peptides in small water droplets in the
gas phase is expected to disclose yet unknown phenomena
related to charge separation and recombination processes in
solvent-restricted aqueous environments.
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