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Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha
particles (4He nuclei) within the interior of a larger nucleus. In this Letter, we present lattice Monte Carlo
calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon,
and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon
correlations at short distances, we determine the shape of the alpha clusters and the entanglement of
nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational
approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field
Monte Carlo simulations in computing density correlations relative to the center of mass. We use the
pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster
correlations in 12C, 14C, and 16C. The structural similarities among the carbon isotopes suggest that 14C and
16C have excitations analogous to the well-known Hoyle state resonance in 12C.
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Nuclear clustering has been shown to be important in
several well-known examples [1–4], however much
remains to be discovered about the general nature of
clustering in nuclei. There have been many exciting recent
advances in ab initio nuclear structure theory [5–12] that
link nuclear forces to nuclear structure in impressive
agreement with experimental data. However, we still know
very little about the quantum correlations among nucleons
that give rise to nuclear clustering and collective behavior.
The main difficulty in studying alpha clusters in nuclei is
that the calculation must include four-nucleon correlations.
Unfortunately, in many cases this dramatically increases the
amount of computer memory and computing time needed
in calculations of heavier nuclei. Nevertheless, there is
promising work in progress using the symmetry-adapted
no-core shell model [13], antisymmetrized molecular
dynamics [14], fermionic molecular dynamics [15], the
alpha-container model [16], the Monte Carlo shell model
[17], and the Green’s function Monte Carlo approach [18].
Lattice calculations using chiral effective field theory

and auxiliary-field Monte Carlo methods have probed
alpha clustering in the 12C and 16O systems [19–22].
However, these lattice simulations have encountered severe

Monte Carlo sign oscillations in cases where the number of
protons Z and number of neutrons N are different. In this
Letter we solve this problem by using a new leading-order
lattice action that retains a greater amount of symmetry,
thereby removing nearly all of the Monte Carlo sign
oscillations. The relevant symmetry is Wigner’s SU(4)
spin-isospin symmetry [23], where the four nucleon
degrees of freedom can be rotated as four components
of a complex vector. Previous attempts using SU(4)
symmetry had failed due to the tendency of nuclei to
overbind in larger nuclei. However, recent progress has
uncovered important connections between local inter-
actions and nuclear binding, as well as the significance
of the alpha-alpha interaction [12,24,25]. Following this
approach, we have constructed a leading-order lattice
action with highly suppressed sign oscillations, which
reproduces the ground-state binding energies of the hydro-
gen, helium, beryllium, carbon, and oxygen isotopes to an
accuracy of 0.7 MeV per nucleon or better. The lattice
results are shown in Fig. 1(a) in comparison with the
observed ground state energies. The astonishingly good
agreement at leading order in chiral effective field theory
with only three free parameters is quite remarkable and
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bodes well for future calculations at higher orders. We
use auxiliary-field Monte Carlo simulations with a spatial
lattice spacing of 1.97 fm and lattice time spacing
1.97 fm=c. We comment that the results for these ground
state energies are equally good when including Coulomb
repulsion and a slightly more attractive nucleon-nucleon
short-range interaction. The full details of the lattice
interaction, nucleon-nucleon phase shifts, simulation
methods, and results are given in the Supplemental
Material [26].
Let ρðnÞ be the total nucleon density operator on lattice

site n. We will use short-distance three- and four-nucleon
operators as probes of the nuclear clusters. To construct a
probe for alpha clusters, we define ρ4 as the expectation
value of ∶ρ4ðnÞ=4!∶ summed over n. The ∶∶ symbols
indicate normal ordering where all annihilation operators
are moved to the right and all creation operators are moved

to the left. For nuclei with even Z and even N, there
are likely no well-defined 3H or 3He clusters since their
formation is not energetically favorable. Therefore, we can
use short-distance three-nucleon operators as a second
probe of alpha clusters. We define ρ3 as the expectation
value of ∶ρ3ðnÞ=3!∶ summed over n. A 3H or 3He cluster
may form in nuclei with odd Z or odd N. In these cases we
can use spin- and isospin-dependent three-nucleon oper-
ators to probe the 3H and 3He clusters. As we consider only
nuclei with even Z and even N here, we focus on ρ3 and ρ4
for the remainder of the discussion. We note that another
measure of clustering in nuclei by measuring short-distance
correlations has been introduced in Ref. [27].
Because of divergences at short distances, ρ3 and ρ4 will

depend on the short-distance regularization scale, which in
our case is the lattice spacing. However, the regularization-
scale dependence of ρ3 and ρ4 does not depend on the
nucleus being considered. Therefore, if we let ρ3;α and ρ4;α
be the corresponding values for the alpha particle, then the
ratios ρ3=ρ3;α and ρ4=ρ4;α are free from short-distance
divergences and are model-independent quantities up to
contributions from higher-dimensional operators in an
operator product expansion. The derivations of these state-
ments are given in the Supplemental Material [26]. We have
computed ρ3 and ρ4 for the helium, beryllium, carbon, and
oxygen isotopes. As our leading-order interactions are
invariant under an isospin mirror flip that interchanges
protons and neutrons, we focus here on neutron-rich nuclei.
The results for ρ3=ρ3;α and ρ4=ρ4;α are presented in Fig. 1(b).
As we might expect, the values for ρ3=ρ3;α and ρ4=ρ4;α are
roughly the same for the different neutron-rich isotopes of
each element.
Since ρ4 involves four nucleons, it couples to the center

of the alpha cluster while ρ3 gets a contribution from a
wider portion of the alpha-cluster wave function.
Therefore, a value larger than 1 for the ratio of ρ4=ρ4;α
to ρ3=ρ3;α corresponds to a more compact alpha-cluster
shape than in vacuum, and a value less than 1 corresponds
to a more diffuse alpha-cluster shape. In Fig. 1(b) we
observe that the ratio of ρ4=ρ4;α to ρ3=ρ3;α starts at 1 or
slightly above 1 when N is comparable to Z, and the ratio
gradually decreases as the number of neutrons is increased.
This is evidence for the swelling of the alpha clusters as
the system becomes saturated with excess neutrons. The
effect has also been seen in 6He and 8He in Green’s function
Monte Carlo calculations [28].
We comment here that if one wants to study the swelling

of alpha clusters in detail, then there are other local
operators that provide more direct geometrical information
such as the operators ∶ρ3ðnÞρðn0Þ∶ and ∶ρ2ðnÞρ2ðn0Þ∶,
where n0 is a nearest-neighbor site to n. These local
operators have the advantage of measuring four-nucleon
correlations directly rather than inferring them from the
ratio of four-body and three-body correlations, which may
not work well for cases with very large isospin imbalance.
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FIG. 1. In panel (a) we show the ground state energies versus
number of nucleons A for the hydrogen, helium, beryllium,
carbon, and oxygen isotopes. The errors are 1 standard deviation
error bars associated with the stochastic errors and the extrapo-
lation to an infinite number of time steps. In panel (b) we show
ρ3=ρ3;α and ρ4=ρ4;α for the neutron-rich helium, beryllium,
carbon, and oxygen isotopes. The error bars denote 1 standard
deviation errors associated with the stochastic errors and the
extrapolation to an infinite number of time steps. For comparison
we show also the number of alpha clusters, Nα.
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The traditional approach to nuclear clustering usually
involves a variational ansatz where the wave function is
expanded in terms of some chosen set of alpha-cluster wave
functions. However, the answer obtained this way may
depend strongly on the details of the interactions and the
choice of alpha-cluster wave functions. This problem of
model dependence is solved by calculating short-range
multinucleon quantities. Even though we use only short-
range operators, the quantities ρ3=ρ3;α and ρ4=ρ4;α act as
high-fidelity alpha-cluster detectors. Their values are
strongly enhanced if the nuclear wave function has a
well-defined alpha-cluster substructure. As shown in the
Supplemental Material [26], the enhancement factor for
ρ3=ρ3;α is ðRA=RαÞ6, where RA is the nuclear radius and Rα

is the alpha-particle radius. The enhancement factor for
ρ4=ρ4;α is an even larger factor of ðRA=RαÞ9.
We denote the number of alpha clusters as Nα. A simple

counting of protons gives Nα ¼ 1 for neutron-rich helium,
Nα ¼ 2 for neutron-rich beryllium, Nα ¼ 3 for neutron-rich
carbon, and Nα ¼ 4 for neutron-rich oxygen. However, the
alpha clusters are immersed in a complexmany-body system,
and it is useful to quantify the entanglement of the nucleons
comprising each alpha cluster with the outside medium. The
observables ρ3=ρ3;α and ρ4=ρ4;α are useful for this purpose.
Let us define δρ3α as the difference ρ3=ρ3;α − Nα divided by
Nα. Since δρ3α measures the deviation of the nuclear wave
function from a pure product state of alpha clusters and
excess nucleons, we call it the ρ3 entanglement of the alpha
clusters. In an analogous manner, we can also define the ρ4
entanglement δρ4α as the difference ρ4=ρ4;α − Nα divided by
Nα. δ

ρ4
α turns out to be quantitatively similar to δρ3α , though

with more sensitivity to the shape of the alpha clusters.
In Fig. 1(b), we showNα along with the ratios ρ3=ρ3;α and

ρ4=ρ4;α. The relative excess of ρ3=ρ3;α compared toNα gives
δρ3α , and the relative excess of ρ4=ρ4;α compared to Nα gives
δρ4α . We see that δρ3α is negligible for 6He and 8He, indicating
an almost pure product state of alpha clusters and excess
neutrons. For the beryllium isotopes, δρ3α is about 0.18 for 8Be
and rises to about 0.34 for 14Be. In this leading-order
calculation the 8Be ground state is about 1 MeV below the
two-α threshold. The addition of the Coulomb interaction
and other corrections should push this energy closer to
threshold, and one expects δρ3α to decrease as a result. For the
carbon isotopes, it is about 0.28 for 12C and rises to a
maximum of about 0.50 near the drip line. For the oxygen
isotopes, δρ3α is about 0.50 for 16O and increases with neutron
number up to 0.73. For such high values of the ρ3 entangle-
ment, we expect a simple picture in terms of alpha clusters
and excess neutrons will break down. δρ3α should be much
lower for excited clusterlike states of the oxygen isotopes.
With ρ3 entanglement, we have a model-independent quan-
titative measure of nuclear cluster formation in terms of
entanglement of the wave function. Our results show that the
transition from clusterlike states in light systems to nuclear

liquidlike states in heavier systems should not be viewed as a
simple suppression of multinucleon short-distance correla-
tions, but rather an increasing entanglement of the nucleons
involved in the multinucleon correlations.
Despite the many computational advantages of auxiliary-

field Monte Carlo methods, one fundamental deficiency
is that the simulations involve quantum states that are
superpositions of many different center-of-mass positions.
Therefore, density distributions of the nucleons cannot be
computed directly. To solve this problem we have devel-
oped a new method called the pinhole algorithm. In this
algorithm an opaque screen is placed at the middle time
step with pinholes bearing spin and isospin labels that allow
nucleons with the corresponding spin and isospin to pass.
We use A pinholes for a simulation of A nucleons, and
the locations as well as the spin and isospin labels of
the pinholes are updated by Monte Carlo importance
sampling. From the simulations, we obtain the expectation
value of the normal-ordered A-body density operator
∶ρi1;j1ðn1Þ � � � ρiA;jAðnAÞ∶, where ρi;j is the density operator
for a nucleon with spin i and isospin j.
Using the pinhole algorithm, we have computed the

proton and neutron densities for the ground states of 12C,
14C, and 16C. In order to account for the nonzero size of the
nucleons, we have convolved the point-nucleon distribu-
tions with a Gaussian distribution with root-mean-square
radius 0.84 fm, the charge radius of the proton [29,30]. The
results are shown in Fig. 2 along with the experimentally
observed proton densities for 12C and 14C [31], which we
define as the charge density divided by the electric charge
e. From Fig. 2 we see that the agreement between the
calculated proton densities and experimental data for 12C
and 14C is rather good. We show data for Lt ¼ 7, 9, 11, 13,
15 time steps. The fact that the results have little depend-
ence on Lt means that we are seeing ground state proper-
ties. As we increase the number of neutrons and go from
12C to 16C, the shape of the proton density profile remains
roughly the same. However, there is a gradual decrease in
the central density and a broadening of the proton density
distribution. We see also that the excess neutrons in 14C and
16C are distributed fairly evenly, appearing in both the
central region as well as the tail.
We now study the alpha-cluster structures of 12C, 14C,

and 16C in more detail. In order to probe the alpha cluster
geometry, we use the fact that there is only one spin-up
proton per alpha cluster. Using the pinhole algorithm, we
consider the triangular shapes formed by the three spin-up
protons in the carbon isotopes. This correlation function
is free of short-distance divergences, and so, up to the
contribution of higher-dimensional operators, it provides a
model-independent measure that serves as a proxy for the
geometry of the alpha-cluster configurations.
The three spin-up protons form the vertices of a triangle.

When collecting the lattice simulation data, we rotate the
triangle so that the longest side lies on the x axis. We also
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rescale the triangle so the longest side has length 1, and flip
the triangle, if needed, so that the third spin-up proton is in
the upper half of the xy plane. Histograms of the third spin-
up proton probability distributions for 12C, 14C, and 16C are
plotted in Figs. 3(a)–3(c) using the data at Lt ¼ 15 time
steps. The data for other values of Lt are almost identical.
There is some jaggedness due to the discreteness of the
lattice, but we see quite clearly that the histograms for 12C,
14C, and 16C are very similar. While there is some increase
in the overall radius of the nucleus, the rescaled cluster
geometry of the three carbon isotopes remains largely the
same. In each case we see that there is a strong preference
for triangles where the largest angle is less than or equal to
90 deg. We should note that idea that the ground state of 12C
has an acute triangular alpha-cluster structure has a long
history dating back to Ref. [32].
Given the rich cluster structure of the excited states of

12C, this raises the interesting possibility of similar cluster
states appearing in 14C and 16C. In particular, the bound 0þ2
state at 6.59 MeV above the ground state of 14C may be a
bound-state analog to the Hoyle state resonance in 12C at
7.65 MeV [33,34]. It may also have a clean experimental
signature since low-lying neutron excitations are sup-
pressed by the shell closure at eight neutrons. There is
also a bound 0þ2 in 16C; however, in this case one expects

FIG. 3. The two red spheres with arrows indicate the first two
spin-up protons, and the line connecting them is the longest side
of the triangle. We show the third spin-up proton probability
distribution in 12C in panel (a), 14C in panel (b), and 16C in panel (c).
The results are computed at Lt ¼ 15 time steps. In panel (d) we
show the third spin-up proton probability distribution for a simple
Gaussian lattice model of the distribution of the spin-up protons.
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FIG. 2. Plots of the proton and neutron densities for the ground
states of 12C, 14C, and 16C vs radial distance. We show data for
Lt ¼ 7, 9, 11, 13, 15 time steps. We show 12C in panel (a), 14C in
panel (b), and 16C in panel (c). The errors are 1 standard deviation
error bars associated with the stochastic errors. For comparison
we show the experimentally observed proton densities for 12C
and 14C [31].
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low-lying two-neutron excitations to be important, thereby
making the analysis more complicated. We note that there
is ample experimental evidence for the cluster properties of
the neutron-rich beryllium and carbon isotopes [35–38].
In order to analyze what we are seeing in the lattice data,

we can make a simple Gaussian lattice model of the
distribution of the spin-up protons. We consider a proba-
bility distribution Pðr1; r2; r3Þ on our lattice grid for the
positions of the protons r1, r2, and r3. We take the
probability distribution to be a product of Gaussians with
root-mean-square radius 2.6 fm (charge radius of 14C) and
unit step functions that vanish if the magnitude of r1 − r2,
r2 − r3, or r3 − r1, is smaller than 1.7 fm (charge radius
of 4He),

exp

�
−

P
i ri

2

2ð2.6 fmÞ2
�Y

j>k

θðjrj − rkj − 1.7 fmÞ: ð1Þ

We can factor out the center-of-mass distribution of the
three spin-up protons and recast the Gaussian factors as a
product of Gaussians for the separation vectors r1 − r2,
r2 − r3, or r3 − r1 with root-mean-square radius 4.5 fm,

Y
j>k

exp

�
−

ðrj − rkÞ2
2ð4.5 fmÞ2

�
θðjrj − rkj − 1.7 fmÞ: ð2Þ

In Fig. 3(d) we show the third spin-up proton probability
distribution corresponding to this model. Despite the
simplicity of this model with no free parameters, we note
the good agreement with the lattice data for 12C, 14C, and
16C. The only discrepancy is that the model overpredicts the
probability of producing obtuse triangular configurations.
This indicates that there are some additional correlations
between the clusters that go beyond this simple Gaussian
lattice model.
In this Letter we have presented a number of novel

approaches to computing and quantifying clustering and
entanglement in nuclei. We hope that this work may help to
accelerate progress in theoretical and experimental efforts
to understand the correlations that produce nuclear cluster-
ing and collective behavior.
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