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We analyze ground state (GS) factorization in general arrays of spins s; with XXZ couplings immersed
in nonuniform fields. It is shown that an exceptionally degenerate set of completely separable symmetry-
breaking GSs can arise for a wide range of field configurations, at a quantum critical point where all
GS magnetization plateaus merge. Such configurations include alternating fields as well as zero-bulk
field solutions with edge fields only and intermediate solutions with zero field at specific sites, valid for
d-dimensional arrays. The definite magnetization-projected GSs at factorization can be analytically
determined and depend only on the exchange anisotropies, exhibiting critical entanglement properties. We
also show that some factorization-compatible field configurations may result in field-induced frustration

and nontrivial behavior at strong fields.
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One of the most remarkable phenomena arising in finite
interacting spin systems is that of factorization. For
particular values and orientations of the applied magnetic
fields, the system possesses a completely separable exact
ground state (GS) despite the strong couplings existing
between the spins. The close relation between GS factori-
zation and quantum phase transitions was first reported in
Ref. [1] and has since been studied in various spin models
[2-12], with general conditions for factorization discussed
in Refs. [7,13]. Aside from some well-known integrable
cases [14—17], higher-dimensional systems of arbitrary spin
in general magnetic fields are not exactly solvable, so that
exact factorization points and curves provide a useful
insight into their GS structure.

The XXZ model is an archetypal quantum spin system
which has been widely studied to understand the properties
of interacting many-body systems and their quantum
phase transitions [18-23]. It can emerge as an effective
Hamiltonian in different scenarios, like bosonic and fer-
mionic Hubbard models [24-27] and interacting atoms in a
trapping potential [27-29]. Renewed interest in it has been
enhanced by the recent advances in quantum control with
state-of-the-art technologies [30,31], which enable its finite
size simulation even with tunable couplings and fields in
systems such as cold atoms in optical lattices [27-29,
32-34], photon-coupled microcavities [35-37], supercon-
ducting Josephson junctions [38-42], trapped ions [30,
43-46], atoms on surfaces [47], and quantum dots [48].
These features make it a suitable candidate for implementing
quantum information processing tasks [27-31,48-55].

Our aim here is to show that, in finite XXZ systems
of arbitrary spin under nonuniform fields, highly degener-
ate exactly separable symmetry-breaking GSs can arise
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for a wide range of field configurations in arrays of any
dimension, at an outstanding critical point where all
magnetization plateaus merge and entanglement reaches
full range. The Pokrovsky-Talapov (PT)-type transition in a
spin-1/2 chain in an alternating field [20] is shown to
correspond to this factorization. Magnetization phase dia-
grams, showing nontrivial behavior at strong fields, and
pair entanglement profiles for distinct factorization-com-
patible field configurations are presented, together with
analytic results for definite magnetization GSs.

We consider an array of N spins s; interacting through
XXZ couplings and immersed in a general nonuniform
magnetic field along the z axis. The Hamiltonian reads

i~y

H==) WS JU(Sis;+ 88} +JI8is5. (1)

i<j

with 4’ and S* the field and spin components, respectively, at

site i and J and J¥ the exchange coupling strengths. Since
H commutes with the total spin component $¢ = ) .57, its
eigenstates can be characterized by their total magnetization
M along z. The exact GS will then exhibit definite M
plateaus as the fields A’ are varied, becoming maximally
aligned (|[M| = S = > _;s;) and hence completely separable
for sufficiently strong uniform fields. Otherwise, it will be
normally entangled.

We now investigate the possibility of H having a
nontrivial completely separable GS of the form

©) =@, eSie S|t = | /N (2)

where the local state [1;) (S7|1;) = s;|1;)) is rotated to an
arbitrary direction n; = (sin@; cos ¢;, sin 6; sin ¢;, cos 8;).
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|®) will be an exact eigenstate of H iff two sets of conditions
are met [13]. The first ones,

JU cos py;(1 — cos @; cos 0;) = JY sin6;sin0;,  (3)
Jij Sin¢ij(COS 91' — COS 91) = O, (4)

where ¢;; = ¢; — ¢, are field independent and relate the
alignment directions with the exchange couplings, ensuring
that H does not connect |®) with two-spin excitations. The
second ones,

hisin@; = Zsj[lij cos ¢b;j cos 0 sin@; — J¥ sin 6, cos 0],
i
(5)
0="> s;Jsing;sin0;, (6)
#i
determine the factorizing fields (FFs) and cancel all ele-

ments connecting |®) with single spin excitations, repre-
senting the mean field equations Jy, 4, (®|H|®) = 0.

These equations are always fulfilled by aligned states
(0, = 0 or zVi). We now seek solutions with 8; # 0, z and
¢i; = 0Vi, j [56]. Equations (4) and (6) are then trivially
satisfied, whereas Eq. (3) implies

_tan(0;/2)
’7ij=m_AUi\/Alzj_l’ (7)

where A;; = JY g = Aj;. Such solutions then become
feasible if |A;;| > 1. For |A;;] > 1, (7) yields two possible
values of 0; for a given 0; (0; = 9, if 0; = Jy; see Fig. 1,
top left). And given 6;, 0; # 0, x, there is a single value
A= (ni;+17}')/2 satisfying (7) (n;jl —A,F /A,?j—1>.

If Eq. (7) is satisfied for all coupled pairs, Eq. (5) leads to
the factorizing fields

hi = Zsjy,.jﬂu /A% -1, (8)
J

where v;; = —vj;; = *1 is the sign in (7). These fields are
independent of the angles 6; and always fulfill the weighted

zero sum condition
> sihi =0. (9)

The ensuing energy Eg = —>_;s;n; - [h + > ., T"s;n]
(J ;{D = ,75,,”) depends only on the strengths JY:

E@ == —ZSiSjJij, (10)

i<j

coinciding with that of the M = £ aligned states in such a
field. It is proved (see Supplemental Material [57]) that, if

éj > 0Vi, j, (10) is the GS energy of such H. Essentially,
H can be written as a sum of pair Hamiltonians H/ whose

R R R I g1 J
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FIG. 1. Top left: The two solutions of Eq. (7) for &; vs 0; (thick

solid lines). For an arbitrary initial spin orientation 9, at one site,
successive application of Eq. (7) determines the possible ori-
entation angles (indicated by the arrows) of the remaining spins in
a factorized eigenstate |®). Each sequence of angles leads to a
different factorizing field configuration determined by Eq. (8),
shown in the top right panels for three spins and in the bottom
rows for the first six spins of a chain with uniform spin and
couplings. Two extremal cases arise: an alternating solution (a)
and a zero-bulk field solution with edge fields only (d). Solutions
with intermediate zero fields are also feasible (b),(c). In a cyclic
chain, the first field is 2h;.

GS energies are precisely —sl-stéj. If Jéj <O0Vi, j, itis
instead its highest eigenvalue.

These separable eigenstates do not have a definite mag-
netization, breaking the basic symmetry of H and containing
components with all values of M. They can then arise only at
an exceptional point where the GS becomes 25 + 1 degen-
erate and all GS magnetizations plateaus coalesce: Since
[H,Py] =0, with Py, = (1/2x) [ S ~Mdgp the pro-
jector onto total magnetization M, HP;|®) = EgP,|®)
for all M =-S,...,5. All components of |®) with
definite M are exact eigenstates with the same energy
(10). Moreover, the normalized projected states are inde-
pendent of both ¢ and the seed angle 8; = 9,), depending just
on the exchange anisotropies A;; and the signs v;; (see
Supplemental Material [57]):

N i )
Pyl®) o« > H ( 25i )ngi’il '

|my...my),
S —m;

(11)

where 7; ;| denote the ratios (7) along any curve in the array
joining all coupled spins. In contrast with |®), these states are
entangled V|M| < S — 1 and represent the actual limit of the
exact GS along the Mth magnetization plateau as the
factorization point is approached.
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As a basic example, for a single spin-s pair with J¥ = J,
GS factorization will arise whenever J.>0 and |A|=
|J./J|>1, at opposite FFs h! = —h? = +h,, with

hy = sJV A2 - 1. (12)

At these points the GS is 4s + 1 degenerate, with energy
Eg = —sJ, and projected GSs

5D (m i)
m s+m—M 77”’"‘M|m,M—m>,

\/ |PM|® m

2s M(n)

(13)

) = (o = 1P (2 1)/ (7 = 1)
with P&* (x) the Jacobi polynomials and 7 the ratio (7).
These states are entangled, with (13) their Schmidt
decomposition.

Spin chains.—The factorized GSs of a single pair can be
used as building blocks for constructing separable GSs of a
chain of N spins (Fig. 1). For first-neighbor couplings, after
starting with a seed 6; = 9; € (0,xz) at the first spin,
0,,...,0y are determined by Eq. (7). The two choices
for 6, at each step then lead to 2V~! distinct factorized states
and FF configurations in an open chain.

For uniform spins s; =s and couplings JH*! =J,
A; ;.1 = AVi, the FF (8) become hi = v;h, with hy given
by (12) and v; = ijij = #£2 or O for bulk spins and +1
for edge spins. Among the plethora of factorizing spin and
field configurations, two extremal cases stand out: a Néel-
type configuration 9¢9;9¢9;..., implying an alternating
field hi = 4+2(—1)"h, for bulk spins and |h}| = |hY| = h
for edge spins [Fig. 1(a)], and a solution with increasing
angles 9y, 39, 9,, ..., implying a zero-bulk field and edge
fields hl = —hY = ih [Fig. 1(d)]. Solutions with inter-
mediate zero fields are also feasible [Figs. 1(b) and 1(c)].Ina
cyclic chain (N +1=1, J, N — 7 ,)» the number of con-

figurations is smaller, i.e., (. 7)) (= 2N71/\/zN /8 for large

N), as (7) should be also fulfilled for the 1 — N pair, entailing
Oy = 944, N even, and an equal number of positive and
negative choices in (7). For A — 1, A, — 0 and all solutions
converge to a uniform |®) [0; constant, Eq. (7)].

Spin lattices.—Previous arguments can be extended to
d-dimensional spin arrays, like spin-star geometries [55] and
square or cubic lattices with first-neighbor couplings and
fixed A;; = A. As the angles 6; of all spins coupled to spin
should satisfy (7), they must differ from 6; in just one step:
0; = 94y if ; = 9 (Fig. 1). Nonetheless, the number of
feasible spin and field configurations still increases expo-
nentially with lattice size (see Supplemental Material [57]
for a detailed discussion). The FFs are i\ = +u;h, with v;
integer. In particular, the previous two extremal solutions
remain feasible (see Fig. 4): By choosing in (7) alternating
signs along rows, columns, etc., we obtain alternating FFs

where

hi. = +2dh, for bulk spins [k = +£4(—1)"h, for d = 2],
with smaller values at the borders. And by always choosing
the same sign in (7), such that 9 increases along rows,
columns, etc., the FFs will be zero at all bulk spins, with
nonzero fields v; A just at the border.

Definite M reduced states.—For uniform anisotropy A,
all ratios 7; ;.1 in the projected states (11) will be either 7 or
n~!, and more explicit expressions can be obtained. For
instance, for a spin-s array in an alternating FF, Eq. (11)
leads, in any dimension, to just three distinct reduced pair
states p}; of spins i # j: pji (odd-even), p},, and p}l, which
will not depend on the actual separation between the spins,
since pt., = p};¥k even, due to the form of |®). Their

nonzero elements are

s st AM—=m,(6+21;;)s
\/ Cm] C QNS 29—M+m (’7)
fij (14)

f ]1 s
?V/IS(EXM(”)

i st

!
J

where m = m; +m; =mj+mj is the pair magnetiza-
tion ([p, S5+ 83 =0), Qn*(n) was defined in (13),
"= (sz_yk)(s_iﬁrk) and f;; =25 —m;—m’, 0,45 —2m,
l;; = 0,~1, 1 for oe, 00, ee pairs, with 6 0(1) for N even
(odd). For |[M| < Ns, these states are mixed (implying
entanglement with the rest of the array) and also entangled
for finite NV, entailing that pair entanglement will reach full
range, as discussed below.

Magnetic behavior.—The FFs (8) are critical points in
the multidimensional field space (hl, ...,hN), as seen in
Fig. 2 for a finite spin-1 cyclic chain in an alternating field
(hy, hy, hy, ...). While a large part of the field plane (%, i)
corresponds for A > 1 to an aligned GS (M = £Ns),

hi/12h|

h/12h|

FIG. 2. GS magnetization diagram for alternating fields
W' =h,, h* =h, in an N =8 spin-1 XXZ chain with
A = 1.2. All magnetization plateaus M = N’s, ..., —Ns coalesce
at the factorizing fields h; = —h, = £2h,. The inset indicates the
mean field (MF) phases.
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sectors with GS magnetizations |[M| < Ns emerge precisely
at the FFs hy = —h, = £2h,. These fields coincide with
those of the PT-type transition for #; = —h, in a spin-1/2
chain [20], which then corresponds to the present GS
factorization (holding for any spin s). The border of the
aligned sector is actually determined by the hyperbola

branches
hy hy
— A [=—=F+A) =1 1
(2sJ ) <2sJ ) ' (15)

(for |h;| > 2h,, F h;/2sJ < A, see Supplemental Material
[57]), which cross at the FF if A > 1. Equation (15) also
determines the onset of the symmetry-breaking (SB) MF
solution (inset in Fig. 2), which ends in an antiferromag-
netic (AFM) phase for strong fields of opposite sign (see
[57] for more details).

Along lines h, = h; + 0, the exact GS for A > 1 then
undergoes a single —Ns — N transition if § < |4h,| but
2Ns transitions M — M + 1 if |§| > 4h,, starting at the
border (15). Hence, at factorization, the application of
further fields (8h,,8h,) = 6h(cosy,siny) enables us to
select any magnetization plateau, which initially emerge
at straight lines at angles tanyy, = [((S})y — (S7)m=1)/
((S3)p—1 — (S5)a)] [61]. Moreover, at this point an addi-
tional arbitrarily oriented local field k' applied at site i will
bring down a single separable GS (that with n;||h’), splitting
the 2Ns + 1 degeneracy and enabling a separable GS
engineering [57].

1.5
I /12hs|

1.5

I/12hd If\2h| 0 s 7 o > 4 ¢ 8
M/s
FIG. 3. Exact pair negativities N;; between spins i and j in the

exact GS of the spin-1 chain in Fig. 2, for fields 4, h, of opposite
sign and first (top left), second (top right), and third (bottom left)
neighbors. Bottom right: The exact pair negativities at factori-
zation (hy = —h, = 2hy) in the definite magnetization GSs, for
identical N = 8 spin-s chains with s = 1/2,...,4. At this point
there are just three distinct pair negativities: N,, (odd-even), N,
and N,,, independent of the actual separation |i— j| and
dependent on M.

The entanglement between two spins i, j in the
same chain is depicted in Fig. 3 through the pair negativity
N = (Tr|p§’;| —1)/2 [62], where p?} is the partial trans-
pose of p;;. N;; exhibits a stepwise behavior, reflecting the
magnetization plateaus, with the onset of entanglement
determined precisely by the FFs and that of the |M| =
Ns — 1 plateau [Eq. (15)]. Because of the interplay between
fields and exchange couplings, N;; increases for decreasing
|M| for contiguous pairs (top left), since the spins become
less aligned, but shows an asymmetric behavior for
second neighbors (top right), as these pairs become more
aligned when M increases and acquires the same sign
as the corresponding field. Third neighbors (bottom left)
remain appreciably entangled at the FFs, since there
N4 = N, = N,,. This property also holds at the border
(15) due to the W-like structure of the M = Ns — 1 GS (see
Supplemental Material [57] for expressions of N;; and the
concurrence). The exact negativities at factorization in the
projected states (11) (bottom right), obtained from (14),
exhibit the same previous behavior with M for any s. They
are in compliance with the monogamy property, decreasing
as N~! for large N at fixed finite M.

The general picture for other field configurations is
similar, but differences do arise, as shown in Fig. 4.
While in all cases the |M| < Ns plateaus emerge from
the FFs, with the diagram of the alternating square lattice

h1/12hs

1 /12hs|

FIG. 4. Exact GS magnetization diagram for distinct spin arrays
and field configurations with A = 1.2. Top: Cyclic N = 12 spin-
1/2 chain with next alternating fields (left) and a zero-bulk field
(right). Bottom: Open 3 x 4 spin-1/2 arrays with alternating (left)
and zero-bulk (right) field configurations. All plateaus merge at
the factorizing point, where the GS has the indicated angles.
Field-induced frustration in configurations with zero fields leads
to a reduced M = 0 plateau.
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remaining similar to that of Fig. 2, the chain with next
alternating fields (44,0, h,, 0, ...) exhibits a much reduced
M = 0 plateau and wider sectors with finite |M| < Ns/2.
This effect is due to the intermediate spins with zero field,
which are frustrated for M = 0 (field-induced frustration)
and become more rapidly aligned with the stronger field as
it increases, and facilitates the selection through nonuni-
form fields of different magnetizations. A similar, though
attenuated, effect occurs in the zero-bulk field configura-
tions (right panels). Moreover, in these three cases, selected
pairs of spins with zero field can remain significantly
entangled in the M = 0O plateau for strong /i; and h, of
opposite signs, as shown in Supplemental Material [57].
The definite M states at factorization become more com-
plex, leading to several distinct reduced pair states, whose
negativities become maximum at different M values [57].

We have proved the existence of a whole family of
completely separable symmetry-breaking exact GSs in
arrays of general spins with XXZ couplings, which arise
for a wide range of nonuniform field configurations of zero
sum [Eq. (9)]. They correspond to a multicritical point
where all GS magnetization plateaus coalesce and where
entanglement reaches full range for all nonaligned definite-
M GSs. This point can arise even for simple field
architectures, like just two nonzero edge fields of opposite
sign in a chain or edge fields in a lattice, and for any size
N >2 and spin s > 1/2. Different GS magnetization
diagrams can be generated, opening the possibility to
access distinct types of GSs (from separable with arbitrary
spin orientation at one site to entangled with any [M| < S)
with small field variations and, hence, to engineer specific
GSs useful for quantum processing tasks. Recent tunable
realizations of finite XXZ arrays [28,29,41] (see also
Supplemental Material [57]) provide a promising scenario
for applying these results.
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