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The conventional theory of hydrodynamics describes the evolution in time of chaotic many-particle
systems from local to global equilibrium. In a quantum integrable system, local equilibrium is characterized
by a local generalized Gibbs ensemble or equivalently a local distribution of pseudomomenta. We study
time evolution from local equilibria in such models by solving a certain kinetic equation, the “Bethe-
Boltzmann” equation satisfied by the local pseudomomentum density. Explicit comparison with density
matrix renormalization group time evolution of a thermal expansion in the XXZ model shows that
hydrodynamical predictions from smooth initial conditions can be remarkably accurate, even for small
system sizes. Solutions are also obtained in the Lieb-Liniger model for free expansion into vacuum and
collisions between clouds of particles, which model experiments on ultracold one-dimensional Bose gases.
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Introduction.—Understanding the dynamics of interact-
ing, many-body quantum systems far from equilibrium
remains one of the most challenging problems in modern
physics. In recent decades, this problem has taken on a new
urgency thanks to rapid progress in the experimental
construction of ultracold atomic systems. The tools avail-
able for strongly nonequilibrium dynamics with nonuni-
form initial conditions, even in integrable models whose
equilibrium properties can be calculated exactly, have been
restricted to low temperature and conformal invariance
[1,2], to specific quantities [3], or to long-time asymptotic
behavior [4–7]. Quantum integrable models include exper-
imentally relevant examples like the Heisenberg antiferro-
magnet and the Lieb-Liniger gas in one dimension. They
possess extensively many conserved quantities, which
prevent them from thermalizing like generic ergodic
systems and often result in ballistic transport properties.
The fact that integrable models can have unusual

“generalized hydrodynamics” due to an infinite number
of local conservation laws was first understood in the
context of classical particle systems [8,9]. This stands in
contrast to conventional hydrodynamics, which describes
transport of only three conserved quantities, namely, mass,
momentum, and energy. The generalized hydrodynamics of
quantum integrable models was developed recently in
studies of the nonequilibrium steady state [1–3,10–19]
that is established at the junction between two infinite
reservoirs [4,5]. An important insight is that making a local-
density-type approximation for all local conserved charges
implies a conservation law at the level of the local
pseudomomentum distribution. Thus in the context of
integrable models, the hydrodynamic equations imply a
fundamental “Bethe-Boltzmann equation,” which is an

inversion of the logic familiar from conventional statistical
mechanics.
The completeness of this equation for the two-reservoir

steady state of the XXZ model, i.e., that the Bethe-
Boltzmann equation correctly captures the physics of
unusual quasilocal conservation laws [20–25], was tested
by comparing hydrodynamic predictions to known results
for spin transport in the linear-response limit [7,26]. It was
observed at the end of Ref. [7] that the ansatz for two
reservoirs introduced in Ref. [5] was actually valid to first
order in time for arbitrary smooth, locally equilibrated
initial conditions. Hydrodynamics in the two-reservoir case
is a function of only one variable (say x=t) because of the
absence of any length scale in the initial condition, and
consequently a first-order solution is sufficient; every other
nontrivial initial condition yields dynamics that is a
function of two variables, space and time. The present
work builds on this earlier observation to develop con-
verged solutions for finite-time hydrodynamical evolution
from general smooth, locally equilibrated initial conditions.
This allows us to make novel and detailed physical

predictions for finite-time dynamics in a wide range of
physical systems. For example, we obtain the first practical
hydrodynamic technique for the one-dimensional Bose gas
[27–32] that applies to arbitrary local generalized Gibbs
ensemble (GGE) initial conditions and takes into account
the higher conservation laws of the underlying quantum
system. This allows us to obtain detailed profiles for the
evolution of the Lieb-Liniger gas from collision type initial
conditions, which could, in principle, be tested in the
laboratory. At the same time, our approach allows for a
hydrodynamic description of finite-time spin dynamics in
the XXZ chain, in excellent agreement with results obtained
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from density matrix renormalization group (DMRG) tech-
niques [33–37].
Bethe-Boltzmann equation.—The Bethe-Boltzmann

equation is a hydrodynamic description of quantum inte-
grable systems [4,5], which aims to capture nonequilibrium
dynamics in such systems using the thermodynamic Bethe
ansatz (TBA) [38,39]. The Bethe-Boltzmann equation
takes its simplest form for the Lieb-Liniger interacting
Bose gas, which was used in Ref. [4]. We briefly summa-
rize the physical assumptions leading to this equation
below, following the presentation given in Ref. [7] for
the XXZ chain. Thus consider a one-dimensional Bose gas
with delta-function interactions, placed on a line of length
L. This has Hamiltonian

H ¼
Z

L

0

dxΨ†
�
−
ℏ2

2m
∇2 − μ

�
Ψþ cΨ†Ψ†ΨΨ; ð1Þ

and the field operators satisfy canonical commutation
relations ½Ψ†ðxÞ;ΨðyÞ� ¼ δðx − yÞ. It is useful to set
ℏ ¼ 2m ¼ 1. This system is called integrable for all values
of the interaction strength c because every N-body scatter-
ing process with N > 2 factorizes as the product of two-
body scattering processes. Integrability in this sense is
reflected by the existence of infinitely many conserved
charges. In a given macrostate of the Lieb-Liniger gas, with
occupied density of states ρk at pseudomomentum k, these
can be written as Qn ¼

R
∞
−∞ dkρkqnðkÞ,with qnðkÞ ¼ kn=n

and n ¼ 0; 1;… Let us now consider evolution of the Lieb-
Liniger gas from locally equilibrated initial conditions; we
assume that this is captured by a spatiotemporally varying
pseudomomentum distribution ρkðx; tÞ [40]. This yields a
spatiotemporal distribution of charge density, given by

Qnðx; tÞ ¼
Z

∞

−∞
dkρkðx; tÞqnðkÞ: ð2Þ

We note that in order for this expression to be defined (and
indeed for the hydrodynamic approach as understood in
Refs. [4,5] to be consistent for the Lieb-Liniger gas),
ρkðx; tÞ must decrease more rapidly in k than any power
of k, for all x and t [43]. Motivated by conservation ofQn at
the quantum mechanical level, let us postulate the local
conservation law

∂tQnðx; tÞ þ ∂xJnðx; tÞ ¼ 0: ð3Þ

Surprisingly, the physically correct formula for Jnðx; tÞ
turns out to be given in terms of the quasiparticle velocity
vk½ρðx; tÞ� of collective excitations of the state with pseu-
domomentum distribution ρkðx; tÞ, which is complicated
but known from the TBA [44]; it has been found that [4,5]

Jnðx; tÞ ¼
Z

∞

−∞
dkρkðx; tÞqnðkÞvk½ρðx; tÞ�; ð4Þ

in the hydrodynamic limit, which is connected to the
validity of earlier conjectures for the Drude weight [45].
Substituting this expression into Eq. (3) and appealing to
completeness of conserved charges in integrable models,
one deduces a conservation law for the local pseudomo-
mentum distribution, given by

∂tρkðx; tÞ þ ∂xfρkðx; tÞvk½ρ�g ¼ 0: ð5Þ

We call this the Bethe-Boltzmann equation, as it has the
structure of a dissipationless Boltzmann equation for the
occupied pseudomomentum density. Intuitively, the Bethe-
Boltzmann equation has the meaning that “occupied
quantum numbers are locally conserved.” We emphasize
that for integrable systems, the generalized hydrodynamic
Eqs. (3) imply the fundamental Bethe-Boltzmann Eq. (5),
in sharp contrast with the logic familiar from conventional
statistical mechanics.
Finite time scheme.—In practice, it is useful to change

variables to the local Fermi factor ϑkðx; tÞ, defined as the
ratio of occupied quantum numbers at pseudomomentum k.
This yields the advection form of the Bethe-Boltzmann
equation [4,5]

∂tϑkðx; tÞ þ vk½ϑ̂�∂xϑkðx; tÞ ¼ 0: ð6Þ

Whereas this equation has so far only been used to analyze
self-similar nonequilibrium steady states whose properties
depend only on x=t, the purpose of this Letter is to illustrate
how it can be solved efficiently at finite time for arbitrary
initial conditions. We propose a numerical solution to
Eq. (6), based on a backwards implicit numerical scheme
[7,46] which for time step dt > 0, determines ϑkðx; tÞ from
ϑkðx; t − dtÞ via the implicit equation

ϑkðx; tÞ ¼ ϑk(x − vk½ϑ̂ðx; tÞ�dt; t − dt): ð7Þ

This solves Eq. (6) up to order Oðdt2Þ. We emphasize that
the velocity in the right-hand side of Eq. (7) depends
nonlinearly on all of the Fermi factors at (x, t), making
Eq. (7) an implicit equation that can be solved by numerical
iteration. Details of our implementation can be found in the
Supplemental Material [44]. Achieving convergence of
numerical schemes for nonlinear conservation laws in
general, even in the low-dimensional setting, is known
to be difficult [47]. It is therefore remarkable that the above
scheme, applied to an extremely high-dimensional system
[48], converges at all. Moreover, the scheme [Eq. (7)] is
found to converge quickly as dt → 0, so that one can obtain
accurate results even for large time steps dt. From the
solution of Eq. (6), one can readily compute physical
quantities of interest (such as charge and current densities)
using Eqs. (2) and (4).
We note that in general, nonlinear systems of equations

of conservation type [Eq. (5)] or advection type [Eq. (6)]
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are difficult to understand analytically, because of the
possibility of shock formation from smooth initial con-
ditions. From the viewpoint of mathematical rigor, the
conservation form [Eq. (5)] is better defined, but existing
analytical [49] methods for understanding conservation
laws have little practical utility in the present high-dimen-
sional limit. Ordinarily, one can make little analytical
progress with nonlinear advection equations. However,
somewhat surprisingly, the advection form [Eq. (6)] lies
in a special class of such systems which are possible to
understand analytically. These are the “semi-Hamiltonian”
or “rich” systems of hydrodynamic type [50–53], and
possess several interesting geometrical properties related
to integrability (see Supplemental Material [44]).
Hydrodynamics for the XXZ spin chain.—The Bethe-

Boltzmann formalism can be extended to study nonequili-
brium dynamics and transport in any integrable system or
integrable quantum field theory. A particularly interesting
example is provided by the spin-1=2 XXZ chain with
Hamiltonian

H ¼ J
X
j

SxjS
x
jþ1 þ SyjS

y
jþ1 þ ΔSzjS

z
jþ1; ð8Þ

where predictions from hydrodynamics can be compared to
DMRG results [33,34]. Here, we set the coupling to J ¼ 1,
and parameterize the anisotropy of the theory byΔ ¼ cos γ.
The Bethe-Boltzmann formalism for the gapless phase
(−1 < Δ < 1) of this model is discussed in detail elsewhere
in the literature [5,7,26] (see Supplemental Material [44]).
For the purposes of comparison with the DMRG, we
restrict to Δ ¼ 1

2
(other values of Δ were considered in

previous works [5,7,26] for nonequilibrium steady states).
We also focus on nonequilibrium energy transport, in
particular the evolution of local energy density, given by
nEðx; tÞ ¼

PNt
j¼1

R
dλejðλÞρjðx; t; λÞ in the hydrodynamic

limit (see Supplemental Material [44]).
To illustrate the range of validity of the method, we

consider a strongly nonequilibrium example, namely, the
Gaussian initial temperature profile

βðxÞ ¼ β0 − ðβ0 − βMÞe−x2=L2

; ð9Þ

with β0 > βM. Physically speaking, this corresponds to a
perturbation β−1M of a background temperature β−10 , local-
ized over a typical length ∼L. We first illustrate the
convergence of our numerical scheme [Eq. (6)] by taking
such a Gaussian initial state and letting the time step
dt → 0. This is depicted in Fig. 1. As dt is lowered, the
numerical solution at long times (say, t ¼ 20) converges
very quickly, and remarkably, even one-step or two-step
schemes (e.g., dt ¼ 20 or dt ¼ 10) yield good approx-
imations to the converged solution.
We now compare the predictions of the Bethe-

Boltzmann equation against DMRG calculations [33,34],

with the initial condition [Eq. (9)] prepared using standard
finite-temperature methods [35–37]. This is shown in
Fig. 2. We find an excellent agreement between DMRG
and hydrodynamic results with dt ¼ 2.5 for quite different
initial temperature profiles—Gaussian [Eq. (9)] and
tanhβðxÞ ¼ ðβ0 þ βMÞ=2þ ½ðβ0 − βMÞ=2� tanhðx=LÞ func-
tions. Provided that the initial condition is smooth enough
for the DMRG and the thermodynamic Bethe ansatz
calculations to agree at t ¼ 0, subsequent agreement at
later times is essentially perfect. In fact, at low temperatures
where it is hard to obtain smooth initial conditions in the
DMRG, the main source of error comes from slight
disagreements in the initial conditions between the two
approaches.
Hydrodynamics for the interacting Bose gas.—An

existing hydrodynamic description of the quasi-one-
dimensional Bose gas, based on a local density approxi-
mation for the first three conserved charges of the
Lieb-Liniger model, has proved effective for capturing
nonequilibrium dynamics for such systems [27–32,54,55].
In its domain of physical validity [55,56], the present
approach improves the existing theory by allowing for local
GGE initial conditions and respecting all higher conserva-
tion laws implied by integrability. The extension of this
hydrodynamic approach to other important aspects of 1D
Bose gas physics, including dynamics in external potentials
[31,32,57–60] and correlation functions [56,60–62], is
currently an active area of research [63,64].
Two nonequilibrium quenches which are of particular

experimental interest are sudden expansions of Bose gases
into vacuum and collisions of clouds of ultracold bosons
[65–75]. We find that our numerical solution to Eq. (6)

FIG. 1. Convergence of the method as dt → 0 for an initial
Gaussian temperature profile given by Eq. (9) with β0 ¼ 2.0,
βM ¼ 0.1, and L ¼ 8 in the XXZ spin chain at Δ ¼ 1

2
. The

numerical solution at time t ¼ 20 is rapidly converging as dt is
decreased, with dt ∼ 10 being already quite accurate. Insets: Top:
Relative error in total energy, showing energy conservation
as dt → 0. Bottom: Close-up of the main figure showing
convergence.
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converges for initial conditions modeling both of these
scenarios. From the resulting evolution in θðx; t; kÞ, one can
track the evolution of any local conserved charge of the
model. In Fig. 3, we plot the time evolution of particle and
energy densities [defined by n ¼ Q1 and nE ¼ Q2 in
Eq. (2), respectively] in a Lieb-Liniger model with inter-
action strength c ¼ 1 from free expansion and collision
type initial conditions. The initial states are prepared at
temperature T ¼ 1 using a chemical potential profile
interpolating between μ ¼ 5 inside a box and a large
negative value μ ¼ −50 outside, with the edges of the
box smoothed out using tanh functions. For the collision
protocol, two clouds of bosons initially prepared as in the
free expansion quench are given opposite momenta
k ¼ �k0 with k0 ¼ 2.5.
General features.—We hope that the previous examples

have established that the Bethe-Boltzmann equation is a

valuable tool for specific computations. More generally, it
is natural to ask which phenomena in integrable models are
missed by this hydrodynamical approach and how it differs
qualitatively from conventional hydrodynamics. Clearly
there is a significant assumption that the initial condition is
well described by a local GGE [76,77]. In fact, the
“thermalization problem” for quantum integrable models,
namely, the question of determining the GGE to which a
given quantum state converges in the long-time limit, is a
difficult problem which remains unsolved in general.
Nevertheless, when local equilibrium initial conditions
can be imposed, hydrodynamics does seem to capture
the leading behavior at long time and length scales, as
illustrated in the examples above. There can also be other
important subleading behaviors, beyond the approach to
local equilibrium. An example is the behavior of the Lieb-
Liniger model in the low-temperature limit, where it can be
described by a conformal field theory or bosonization.
Conformal invariance [1] and other methods [78] both
predict a Schwarzian derivative term in the time evolution
from locally thermal initial conditions, which might be an
example of subleading behavior beyond hydrodynamics.
An important difference between generalized hydro-

dynamics in integrable models and conventional hydro-
dynamics concerns reversibility. The collision term in the
standard Boltzmann equation induces dissipation and an
increase of entropy. The Bethe-Boltzmann equation is
dissipationless, and in fact its time evolution is reversible.
The action of microscopic time reversal on a particular
state is to invert all pseudomomenta k while fixing space,
so that the time-reversed pseudomomenta are given by
ρ0kðx; tÞ ¼ ρ−kðx; tÞ. One can show despite the complex
form of the velocity vk in the Bethe-Boltzmann equations, it
undergoes a simple sign change under this microscopic
time reversal transformation [79].
So integrable models again present some surprises

compared to ordinary kinetic theory: while the description
by a local GGE is certainly a great reduction in complexity
compared to an arbitrary quantum state and hence irre-
versible, the flow in the space of local GGEs described by
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FIG. 2. Time evolution of energy density from various initial temperature profiles at t ¼ 0 for the XXZ spin chain at Δ ¼ 1
2
. Left: High

temperature Gaussian initial state. Middle: Low temperature Gaussian initial state. Right: Two-reservoir setup with temperatures β0 ¼ 2,
βM ¼ 1 connected through a tanhðx=LÞ interpolation with L ¼ 8. Inset: Energy current at x ¼ 0 showing the approach to a
nonequilibrium steady state at long times.

FIG. 3. Hydrodynamic evolutions in the Lieb-Liniger model
with interaction strength c ¼ 1: the top panel depicts free
expansion initial conditions (dt ¼ 0.1) and the lower panel
models a collision between clouds of bosons with opposite initial
momenta (dt ¼ 0.05).
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the Bethe-Boltzmann equation is reversible. Presumably
this means that truly diffusive behavior, as is believed to
appear for example in the gapped phase of the XXZ model,
lies beyond this equation; for linear-response spin transport
in XXZ model, which involves both ballistic and diffusive
components [80,81], hydrodynamics correctly captures the
ballistic part [7,26].
There are many possible mathematical questions regard-

ing the existence and structure of solutions to the Bethe-
Boltzmann equation [44], but we hope that the above
results demonstrate its practical utility for applications to
physics. It can be used as a starting point for comparison for
other methods for quantum dynamics, or for incorporating
integrability-breaking terms or driving. The hydrodynam-
ical theory of integrable models is one of many examples in
recent years of how the old vine planted by Yang and Yang
[38] continues to bear fruit.
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