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We present a Monte Carlo method for computing the renormalized coupling constants and the critical
exponents within renormalization theory. The scheme, which derives from a variational principle,
overcomes critical slowing down, by means of a bias potential that renders the coarse grained variables
uncorrelated. The two-dimensional Ising model is used to illustrate the method.
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Since Wilson’s seminal contribution [1] to renormaliza-
tion group (RG) theory [2], there has been strong interest in
methods to compute the renormalized coupling constants
and the critical exponents in a nonperturbative fashion. This
goal has been achieved with the Monte Carlo (MC) RG
approach of Swendsen. In 1979, he introduced a method to
compute the critical exponents, which did not require
explicit knowledge of the renormalized Hamiltonian [8].
A few years later, he solved the problem of calculating the
renormalized coupling constants, using an equality due to
Callen [9] to write the correlation functions in a form
explicitly depending on the couplings. By imposing that the
standard MC expression of a correlation function and its
corresponding Callen form be equal, he derived equations
whose iterative solution led to the coupling constants [10].
Finding the renormalized Hamiltonian is an example of the
inverse statistical mechanical problem [11]. MCRG has
been used successfully in many applications, but difficul-
ties related to sampling efficiency may be severe. Typically,
the evaluation of the correlation functions near a critical
point suffers from critical slowing down and is affected by
large sampling errors in large systems. This difficulty can
be alleviated with ingenious cluster algorithms [12], which,
however, are limited to specific models.
Here we present a MCRG framework based on a

variational principle for a biasing potential acting on the
coarse grained degrees of freedom of a RG transformation.
In our approach, the coupling constants and the critical
exponents derive from the same unifying principle.
Swendsen’s formulas emerge as a special case, but our
scheme also leads to formulations exempt from critical
slowing down. In addition, it permits us to estimate
variationally the effect of truncating the Hamiltonian.
Although the approach is rather general, as we briefly

discuss in the conclusion, here we limit ourselves, for
concreteness, to lattice models with discrete spin degrees of
freedom, fσg. A generic Hamiltonian has the form

HðσÞ ¼
X

α

KαSαðσÞ; ð1Þ

where the Kα are coupling constants and the Sα are
operators acting on the spins σ, such as sums or products
of spins or combinations thereof.
RG considers a flux in the space of Hamiltonians (1)

under scale transformations that reduce the linear size of
the original lattice by a factor b. The rescaled degrees of
freedom take the same discrete values of the original spins,
to which they are related by a coarse graining trans-
formation, σ0 ¼ τðσÞ, satisfying a semigroup property
[7]. For example, τ can be the block spin transformation
of Kadanoff [13].
The distribution of the σ0 is obtained from the distribu-

tion of the σ by tracing out the original degrees of freedom
while keeping the σ0 fixed,

pðσ0Þ ¼
P

σδτðσÞ;σ 0e−HðσÞ

Z
¼ e−H

0ðσ0Þ

Z0 : ð2Þ

Here δ is the discrete Kroneker-delta function; Z and Z0 are
partition functions that ensure the normalization of the
corresponding distributions. While the partition function
Z0 is invariant under RG transformations, the renormal-
ized Hamiltonian H0 is not, except at fixed points of the
RG flow,

Z ¼
X

σ

e−HðσÞ ¼
X

σ0
e−H

0ðσ0Þ ¼ Z0 ð3Þ

and

H0ðσ0Þ ¼ − log
X

σ

δτðσÞ;σ0e−HðσÞ: ð4Þ

Repeated ad infinitum, the RG transformations generate a
flux in the space of Hamiltonians, in which all possible
coupling terms appear, unless forbidden by symmetry. For
example, in an Ising model with no magnetic field, only
even spin products appear. The space of the coupling terms
is, in general, infinite. However, perturbative and non-
perturbative calculations suggest that only a finite number
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of couplings should be sufficient for a given degree
of accuracy.
In the proximity of a critical point, the distribution (2) of

the block spins σ0 displays a divergent correlation length,
originating critical slowing down of local MC updates. This
can be avoided by modifying the distribution of the σ0 by
adding to theHamiltonianH0ðσ0Þ a biasing potentialVðσ0Þ to
force the biased distribution of the block spins, pVðσ0Þ, to be
equal to a chosen target distribution, ptðσ0Þ. For instance, pt
can be the constant probability distribution. Then the σ0 have
the same probability at each lattice site and act as uncorre-
lated spins, even in the vicinity of a critical point.
It turns out that Vðσ0Þ obeys a powerful variational

principle that facilitates the sampling of the Landau free
energy [14]. In the present context, we define the functional
Ω½V� of the biasing potential Vðσ0Þ by

Ω½V� ¼ log

P
σ0e

−½H0ðσ0ÞþVðσ0Þ�
P

σ0e
−H0ðσ0Þ þ

X

σ0
ptðσ0ÞVðσ0Þ; ð5Þ

where ptðσ0Þ is a normalized known target probability
distribution. As demonstrated in [14], the following proper-
ties hold: (1) Ω½V� is a convex functional with a lower
bound. (2) The minimizer, Vminðσ0Þ, of Ω is unique up to a
constant and is such that

H0ðσ0Þ ¼ −Vminðσ0Þ − logptðσ0Þ þ const: ð6Þ

The probability distribution of the σ0 under the action of
Vmin is

pVmin
ðσ0Þ ¼ e−½H0ðσ 0ÞþVminðσ0Þ�

P
σ0e

−½H0ðσ0ÞþVminðσ0Þ� ¼ ptðσ0Þ: ð7Þ

The above three properties lead to the following MCRG
scheme.
First, we approximate Vðσ0Þ with VJðσ0Þ, a linear

combination of a finite number of terms Sαðσ0Þ with
unknown coefficients Jα, forming a vector J ¼
fJ1;…; Jα;…; Jng.

VJðσ0Þ ¼
X

α

JαSαðσ0Þ: ð8Þ

Then the functional Ω½V� becomes a convex function of J,
due to the linearity of the expansion, and the minimizing
vector, Jmin, and the corresponding Vminðσ0Þ can be found
with a local minimization algorithm using the gradient and
the Hessian of Ω,

∂ΩðJÞ
∂Jα ¼ −hSαðσ0ÞiVJ

þ hSαðσ0Þipt
; ð9Þ

∂2ΩðJÞ
∂Jα∂Jβ ¼ hSαðσ0ÞSβðσ0ÞiVJ

− hSαðσ0ÞiVJ
hSβðσ0ÞiVJ

: ð10Þ

Here h·iVJ
is the biased ensemble average under VJ

and h·ipt
is the ensemble average under the target

probability distribution pt. The first average is associated
to the Boltzmann factor expf−½H0ðσ0Þ þ Vðσ0Þ�g ¼P

σδτðσÞ;σ0 exp½−HðσÞ� exp½−VðτðσÞ� and can be computed
with MC sampling. The second average can be computed
analytically if pt is simple enough. h·iVJ

always has
inherent random noise, or even inaccuracy, and some
sophistication is required in the optimization problem.
Following [14], we adopt the stochastic optimization
procedure of [15], and improve the statistics by running
independent MC simulations, called multiple walkers, in
parallel. For further details, consult [14] and Supplemental
Material (SM) [16].
The renormalized HamiltonianH0ðσ0Þ is given by Eq. (6)

in terms of Vminðσ0Þ. Taking a constant pt, we have modulo
a constant,

H0ðσ0Þ ¼ −Vminðσ0Þ ¼
X

α

ð−Jmin;αÞSαðσ0Þ: ð11Þ

In this finite approximation the renormalized Hamiltonian
has exactly the same terms of Vminðσ0Þ with renormalized
coupling constants

K0
α ¼ −Jmin;α: ð12Þ

The relative importance of an operatorSα in the renormalized
Hamiltonian can be estimated variationally in terms of the
relative magnitude of the coefficient Jmin;α. When Jmin;α is
much smaller than the other components of Jmin, the
corresponding Sαðσ0Þ is comparably unimportant and can
be ignored. The accuracy of this approximation could be
quantified by measuring the deviation of pVmin

ðσ0Þ
from ptðσ0Þ.
To illustrate the method, we present a study of the Ising

model on a two-dimensional square lattice in the absence of
a magnetic field. We adopt 3 × 3 block spins with the
majority rule. Twenty-six coupling terms were chosen
initially, including 13 two-spin and 13 four-spin products.
One preliminary iteration of variational RG (VRG) was
performed on a 45 × 45 lattice starting from the nearest-
neighbor Hamiltonian. The coupling terms with renormal-
ized coupling constants smaller than 0.001 in absolute
value were deemed unimportant and dropped from further
calculations. Thirteen coupling terms, including seven two-
spin and six four-spin products, survived this criterion and
were kept in all subsequent calculations [16]. Each calcu-
lation consisted of five VRG iterations starting with
nearest-neighbor coupling, Knn, only. All the subsequent
iterations used the same lattice of the initial iteration.
Standard Metropolis MC sampling [17] was adopted, and
the calculations were done at least twice to ensure that
statistical noise did not alter the results significantly.
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In Fig. 1, results are shown for a 300 × 300 lattice with
two initial Knn, equal to 0.4355 and to 0.4365, respectively.
When Knn ¼ 0.4365, the renormalized coupling constants
increase over the five iterations shown, and would increase
more dramatically with further iterations. Similarly, they
decrease when Knn ¼ 0.4355. Thus, the critical coupling
Kc should belong to the window 0.4355–0.4365. The same
critical window is found for the 45 × 45, 90 × 90,
150 × 150, and 210 × 210 lattices [16]. Because each
iteration is affected by truncation and finite size errors,
fewer iterations for the same rescaling factor would reduce
the error. For example, four VRG iterations with a 2 × 2
block have the rescaling factor of a 16 × 16 block. The
latter is computationally more costly than a calculation with
2 × 2 blocks, but can still be performed with modest
computational resources. Indeed, with a 16 × 16 block,
RG iterations on a 128 × 128 lattice gave a critical window
0.4394–0.4398 [16], very close to the exact value,
Kc ∼ 0.4407, due to Onsager [18].
The statistical uncertainty of the calculated renormalized

coupling constants is smaller with the variational method
than with the standard method [19]. For example, using
VRG and starting with Knn ¼ 0.4365 on a 300 × 300
lattice, we found a renormalized nearest-neighbor coupling
equal to 0.38031� 0.00002 after one RG iteration with
3.968 × 105 MC sweeps. Under exactly the same condi-
tions (lattice size, initial Knn, coupling terms, and number
of MC sweeps) we found instead a renormalized nearest-
neighbor coupling equal to 0.3740� 0.0003 with the
standard method. In the VRG calculation we estimated

the statistical uncertainty with the block averaging method
[20], while we used the standard deviation from 14
independent calculations in the case of the standard
method. A small difference in the values of the coupling
constants calculated with VRG and the standard method is
to be expected, because the two approaches are different
embodiments of the truncated Hamiltonian approximation.
According to theory [21], the critical exponents are

obtained from the leading eigenvalues of ð∂K0
α=∂KβÞ, the

Jacobian matrix of the RG transformation, at a critical fixed
point. In order to find ð∂K0

α=∂KβÞ near a fixed point, we
need to know how the renormalized coupling constants K0

α

from a RG iteration on the Hamiltonian H ¼ P
βKβSβ

change when Kβ is perturbed to Kβ þ δKβ, for fixed target
probability pt and operators Sα. The minimum condition,
Eq. (9), implies ðdΩ=dJαÞ ¼ 0, i.e., for all γ,

P
σSγðσ0Þe−

P
β
½KβSβðσÞ−K0

βSβðσ0Þ�

P
σe

−
P

β
½KβSβðσÞ−K0

βSβðσ 0Þ�
¼ hSγðσ0Þipt

; ð13Þ

and

P
σSγðσ0Þe−

P
β
½ðKβþδKβÞSβðσÞ−ðK0

βþδK0
βÞSβðσ0Þ�

P
σe

−
P

β
½ðKβþδKβÞSβðσÞ−ðK0

βþδK0
βÞSβðσ0Þ�

¼ hSγðσ0Þipt
: ð14Þ

Expanding Eq. (14) to linear order in δK0
α and δKβ, we

obtain ([16])

Aβγ ¼
X

α

∂K0
α

∂Kβ
Bαγ; ð15Þ

where

Aβγ ¼ hSβðσÞSγðσ0ÞiV − hSβðσÞiVhSγðσ0ÞiV; ð16Þ

and

Bαγ ¼ hSαðσ0ÞSγðσ0ÞiV − hSαðσ0ÞiVhSγðσ0ÞiV: ð17Þ

Here h·iV denotes average under the biased
Hamiltonian, ~H ¼ P

β½KβSβðσÞ − K0
βSβðσ0Þ�.

If we required the target average of Sγðσ0Þ to coincide
with the unbiased average under H ¼ P

βKβSβ, K0 would
necessarily vanish and Eqs. (16) and (17) would coincide
with Swendsen’s formulas [8]. If we used a uniform target
probability, the σ0 at different sites would be uncorrelated,
and critical slowing down would be absent.
In practice, in order to compute the critical exponents,

we first need to locate Kc. From the above calculations on
the 45 × 45, 90 × 90, and 300 × 300 lattices with a 3 × 3
block spin, we expect that Kc ¼ 0.436 should approximate

FIG. 1. Variation of the renormalized coupling constants over
five VRG iterations on a 300 × 300 lattice. Each iteration has
1240 variational steps, each consisting of 20 MC sweeps. Sixteen
multiple walkers are used for the ensemble averages in Eqs. (9)
and (10). For clarity, we only show the four largest renormalized
couplings after the first iteration. Full plots are reported in SM
[16]. Top: Simulation starting with Knn ¼ 0.4365. Bottom:
Simulation starting with Knn ¼ 0.4355.
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the critical nearest-neighbor coupling in our model. Indeed
an RG iteration starting from this value gives couplings that
remain essentially constant, as illustrated in Figs. S11–S13
of SM [16].
Then, we use Eqs. (15)–(17) to compute the Jacobian of

the RG transformation by setting Kc ¼ 0.436. The renor-
malized coupling constants after the first RG iteration
represent Kα, and those after the second RG iteration
represent K0

α. The results for biased and unbiased ensem-
bles are shown in Table I, which reports the leading even (e)
and odd (o) eigenvalues of (∂K0

α=∂Kβ) when including 13
coupling terms for the three L × L lattices with L ¼ 45, 90,
and 300. As seen from the table, biased and unbiased
calculations give slightly different eigenvalues, as one
should expect, given that the respective calculations are
different embodiments of the truncated Hamiltonian
approximation. For L ¼ 300 the results are well converged
in the biased ensemble. By contrast, we were not able to
obtain converged results for this lattice in the unbiased
ensemble on the time scale of our simulation. The absence
of critical slowing down in the biased simulation is
demonstrated in Fig. 2, which displays the time decay of
a correlation function in the biased and unbiased ensem-
bles. See also Figs. S14 and S15 of SM [16].
The fixed point used for Table I is approximate, andwe did

not make any effort to fine-tune the approximation.

Refinements could be done iteratively using Eqs. (15) and
(17), as we discuss in a future paper. There is an important
benefit in knowing accurately the location of the fixed point,
because then a single RG iteration, instead of multiple
implicit iterations would suffice to compute the Jacobian.
Moreover, one could use small block spins, having a smaller
statistical uncertainty than larger block spins.
In summary, we have unified the calculation of critical

exponents and renormalized couplings within the same
framework. A key feature of our approach is that we adopt a
biased ensemble, h·iV , for the averages. This not only
simplifies the algorithm, but also enhances the sampling. In
fact, the original motivation for the variational principle
[14] was to overcome the long correlation time in first-
order phase transitions. The bias potential constructed by
optimizing the functional acquires a history dependence
that discourages the sampling of previously visited con-
figurations [14], thereby breaking the long correlation time
of the unbiased simulation. In the RG context, enhanced
sampling eliminates critical slowing down. We expect that
it should be also helpful in systems with deep local free
energy minima, as the variational method was originally
designed to deal precisely with such systems.
The finite size of the numerical samples is a source of error.

If the RG iterations are carried out on a single L × L lattice,
the coarsegrained latticewill have size ðL=bÞ × ðL=bÞ. Then,
as noted in [19], the calculated renormalized couplings will
have different size errors on the L × L and ðL=bÞ × ðL=bÞ
lattices. A better way, as suggested in [22], would be to
perform calculations on two lattices, L × L and
ðL=bÞ × ðL=bÞ, so that the coarse grained lattice rescaled
by bn, at the nth iteration starting fromL × L, would coincide
with the lattice rescaled by bn−1, at the (n − 1)th iteration
starting from ðL=bÞ × ðL=bÞ. In this way, two successive RG
iterations have the same lattice size, with a significant
cancellation of finite size errors. We plan to discuss in a
future paper how this idea could be implementedwithinVRG.
Finally some considerations are in order. It was noted in

[23] that RG ideas can be used to obtain the full thermo-
dynamic functions, not just their singular components. In
fact one has [23]

exp ½H0ðK0;σ0ÞþNgðKÞ� ¼
X

σ

δτðσÞ;σ0 exp ½HðK;σÞ�: ð18Þ

Here gðKÞ is the regular component of the free energy,
which can also be accessed within our approach, as shown
in SM [16] where we demonstrate that gðKÞ is precisely the
thermodynamic free energy per site in the biased ensemble.
It is thus interesting, and somewhat surprising, that the
information on the critical behavior is fully contained in the
statistical ensemble h·iV , even though gðKÞ is a regular
function and h·iV does not show singular behavior.
Our approach can be extended beyond lattice models

with discrete (spin) degrees of freedom. Field theoretical
models, like the Ginzburg-Landau free energy functional

TABLE I. Leading even (e) and odd (o) eigenvalues of
(∂K0

α=∂Kβ) at the approximate fixed point found with VRG,
in both the unbiased and biased ensembles. The number in
parentheses is the statistical uncertainty on the last digit, obtained
from the standard error of 16 independent runs. Thirteen
(5) coupling terms are used for even (odd) interactions. The
calculations used 106 MC sweeps for the 45 × 45 and 90 × 90

lattices, and 5 × 105 sweeps for the 300 × 300 lattice.

L λe1 λo1

Unbiased 45 2.970(1) 7.7171(2)
90 2.980(3) 7.7351(1)

Biased 45 3.045(5) 7.858(4)
90 3.040(7) 7.870(2)

300 3.03(1) 7.885(5)
Exact 3 7.8452

FIG. 2. Time correlation of the estimator A ¼ S0ðσÞS0ðσ0Þ on
45 × 45 and 90 × 90 lattices [Eq. (16)]. S0 is the nearest-neighbor
term in the simulations of Table I.
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Φ½ψ � ([24,25]) could be studied by representing the field
ψðxÞ on a regular lattice, either in direct or reciprocal space.
The values of the field on the lattice are a set of continuous
and unbounded degrees of freedom. RG transformations on
these variables can be studied with VRG, by conveniently
adopting a Gaussian rather than a constant probability pt.
We note that two levels of coarse graining are required to
study critical phenomena starting from the atomistic scale.
First, one constructs a Ginzburg-Landau functional by
coarse graining the atomistic model and then one applies
RG to the Ginzburg-Landau model. Interestingly, both
levels of coarse graining are greatly facilitated by the same
variational principle [14] adopted here to formulate VRG.
The first step of this program, i.e., extracting a Ginzburg-
Landau model from atomistic simulations, has recently
been presented in the literature [26].
In this paper we have focused on static phenomena, but

MCRG approaches exist also for dynamic critical phenom-
ena (see, e.g., [27]). Formulating VRG for dynamics is
beyond the scope of the present study and is left to future
investigation.
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