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We investigate the quantum phase transition of the anisotropic quantum Rabi model, in which the rotating
and counterrotating terms are allowed to have different coupling strengths. The model interpolates between
two known limits with distinct universal properties. Through a combination of analytic and numerical
approaches, we extract the phase diagram, scaling functions, and critical exponents, which determine the
universality class at finite anisotropy (identical to the isotropic limit).We also reveal other interesting features,
including a superradiance-induced freezing of the effective mass and discontinuous scaling functions in the
Jaynes-Cummings limit. Our findings are extended to the few-body quantum phase transitions with N > 1

spins, wherewe expose the same effective parameters, scaling properties, and phase diagram.Thus, a stronger
form of universality is established, valid from N ¼ 1 up to the thermodynamic limit.
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Introduction.—While critical phenomena are tradition-
ally associated with collective behavior in the thermody-
namic limit, quantum phase transitions (QPTs) in systems
with few degrees of freedom were recently brought to
prominence [1,2]. As it turns out, the topic is of great
relevance for ongoing efforts on enhancing and engineering
light-matter interactions. By achieving the strong [3,4],
ultrastrong [5–11], and even deep strong coupling regimes
[12–16], atomic and solid-state resonances are able to
induce profound modifications of the photon fields they
interact with. The quantumRabimodel (QRM), describing a
two-level system coupled to a single electromagnetic mode,
represents the simplest realization of such light-matter
interactions. Thus, it has served as a paradigmatic example
to explore this kind of strong coupling phenomena and has
received renewed attention in recent years [1,17–26].
Remarkably, an analytic solution of the QRM was found

only recently and has also motivated proposing a novel
operational criterion of integrability [18]. More directly
related to the present study are several recent analyses on the
dependence of QRM ground-state properties on the cou-
pling strength [1,22,24]. Among these, Ref. [24] introduced
a variational ansatz based on the polaron and antipolaron
concepts and demonstrated a phase diagram where the
quadpolaron (bipolaron) dominates in the weak (strong)
coupling regime. The crossover becomes sharper by reduc-
ing the bosonic frequency [22,24], and it was later proved
that this behavior indeed reflects the existence of a true QPT,
whose static and dynamical properties were studied in detail
[1,26]. The same type of QPT occurs in the Jaynes-
Cummings (JC) model [2] and in the anisotropic QRM
[27,28], where the JC and QRM become special cases. The
asymmetry between rotating and counterrotating terms is

relevant for a variety of systems, including quantum wells
with spin-orbit coupling [29,30] (possibly emulated by
fermionic gases) and circuit QED, where strong interactions
were already achieved [3,4,6,11,14–17]. In the latter case,
the anisotropic QRM is naturally realized [27,31,32] and is
experimentally relevant [17,32]. Such a model can also be
implemented with trapped ions [26,33], and cavity QED
[34] might allow for alternative realizations.
In the present study, we approach the QPT from the point

of view of universality classes, motivated by the different
types of broken symmetry phase of the JC and QRM critical
points [1,2]. The problem has general interest, since the
existence of universality classes can be understood from a
coarse-grained description, where microscopic features
become irrelevant. However, this argument is not directly
applicable to few-body systems, so it is unclear if established
knowledge is still valid. On the other hand, the remarkable
similarity between the behavior found in Refs. [1,2,27,28]
and the Dicke model, e.g., the precise form of the phase
diagram [31], suggests that few-body QPTs could be
understood through a direct equivalence to regular QPTs.
Indeed, by developing the low-energy theory describing

critical scaling, we find that this is the case. Not only do we
establish that the λ ≠ 0 QPTs belong to a well-defined
universality class, but we extend our treatment to N > 1
spins, thus bridging the gap between the few-body and
thermodynamic QPTs. The identical behavior is valid for
any finite N, includes nonuniversal features, and reconciles
a series of previously disconnected results [1,2,26–28,31].
Our treatment further reveals the unusual renormalization
of the λ ≠ 0 effective mass and the singular character of the
JC limit, where successive discontinuities exist across the
whole critical regime.
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Model.—In terms of the x ¼ ða† þ aÞ= ffiffiffi
2

p
and p ¼

iða† − aÞ= ffiffiffi
2

p
quadratures (with a† a bosonic creation

operator), the Dicke model with anisotropy [31] reads
(ℏ ¼ 1)

H
NΩ

¼ p2 þ x2

2η
þ Jx

N
þ ~g
N

�
1þ λffiffiffiffiffi

2η
p Jzxþ

1 − λffiffiffiffiffi
2η

p Jyp

�
; ð1Þ

where Ji ¼
P

N
i¼1ðσi=2Þ (σ are the Pauli matrices) describe

N identical two-level systems of frequencyΩ (often we will
set Ω ¼ 1). The bosonic frequency is ω, and

η ¼ ΩN=ω; ð2Þ
which plays a crucial role for the QPT. The physical
coupling is g ¼ ~g

ffiffiffiffiffiffiffi
Ωω

p
=2, while λ controls the strength

of counterrotating terms [32]. Note that η → ∞ is realized
by either N → ∞ [31] or Ω=ω → ∞ [1,2]. We initially
assume N ¼ 1, when λ ¼ 1 is the QRM and λ ¼ 0 is the JC
model, and will treat later the case of general N.
Effective Hamiltonian.—To derive an effective theory, we

note that the second term of Eq. (1) becomes dominant in the
η → ∞ limit of interest; thus, the relevant low-energy states
have hσxi≃ −1. Within this subspace, the ground state is
determined by the competition between the first term (a
conventional oscillator) and the last term (the coupling
between the bosonic mode and the two-level system). The
coupling term has a larger prefactor, proportional to η−1=2,
but is off diagonal in σx. Thus,we partitionH into the exactly
solvable part H0 (the first two terms) and the off-diagonal
coupling VOD. The second-order perturbation theory gives

Heff ≃ p2 þ x2

2η
− ~g2

ð1þ λÞ2x2 þ ð1 − λÞ2p2

8η
þ � � � ; ð3Þ

showing that the oscillator term is dominant in the normal
phase (i.e., at weak coupling). On the other hand, at
sufficiently large ~g the coupling term will dominate, and
the Hamiltonian in Eq. (3) becomes unbounded. To this
order of approximation, Heff implies divergent values of
hx2i and hp2i, which in turn signals the onset of a super-
radiant phase at ~gc ¼ 2=ð1þ jλjÞ. This phase boundary is
plotted in Fig. 1(a) as a solid (blue) line. The onset of
instability in Eq. (3) is due to the x2 ðp2Þ terms when λ > 0
(λ < 0), indicating the presence of an x-type (p-type)
superradiant phase. This observation is reflected by the
vertical (red) phase boundary in Fig. 1(a). The gap at ξ < 1 is
also easily derived, and we plot it in Fig. 1(b).
Equation (3) recovers several important features of the

QPT but can also be extended to a nonperturbative form. To
higher orders, a generic contribution is given by a product
of 2n matrix elements of VOD (odd orders are zero) divided
by 2n − 1 energy denominators, which we take all equal to
−1 in the limit of large η. After this approximation, the
series becomes essentially identical to the perturbative
treatment of the ground-state energy of σz=2þ ϵσx [35].

The only difference is that hV2
ODi appears instead of ϵ2.

Obviously, the series for the two-level system gives
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ ϵ2

p
, which leads to

Heff ≃ p2 þ x2

2η
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ ξ2x2 þ ξ02p2 − ξξ0

2η

s
; ð4Þ

where ξ ¼ ~gð1þ λÞ=2 and ξ0 ¼ ~gð1 − λÞ=2. The main idea
of the derivation, given above, should clarify that Eq. (4) is
an exact resummation of the leading perturbative terms,
while more details can be found in Ref. [35].
Mean-field potential and mass renormalization.—We

now discuss the main consequences of Eq. (4), and, for
definiteness, we assume λ > 0 (x-type phase). Then, we
may initially neglect the p operator:

Heff → ~E−ð~xÞ ¼
1

2
ð~x2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ2 ~x2

p
Þ; ð5Þ

where ~x ¼ x=
ffiffiffi
η

p
is a classical coordinate and ~E− has the

standard behavior of the Landau potential across a continu-
ous phase transition, with ξ playing the role of the inverse
temperature: ~E− has one minimum at ~x ¼ 0when ξ < 1 and
two minima at ~x0;� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − ξ−2Þ=2

p
when ξ > 1. The

ground-state energy ~Egs ¼ − 1
2
− 1

4
ðξ2 þ ξ−2 − 2Þθðξ − 1Þ,

where θðxÞ is the step function, is easily obtained from
Eq. (5) and indicates a second-order QPTat the critical value
ξc ¼ 1, in agreement with Fig. 1(a). We also emphasize
that, although the anisotropy parameter λ influences the
critical coupling strength ~gc as well as ~x0;� and ~Egs, the
functional dependence of these physical quantities becomes
universal—in the sense of being independent of λ—once it
is formulated in terms of the rescaled coupling ξ. The order
parameter x20;� is shown in Fig. 1(b).
To address the stability of the mean-field solution with

respect to quantum fluctuations, we consider ( ~p ¼ ηp):

Heff ≃ ~p2

2Mðξ; λÞ þ
~E−ð~xÞ; ð6Þ
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ξ

FIG. 1. (a) Phase diagram, where the blue (red) line indicates a
second-order (first-order) QPT. (b) Energy gap of the normal
phase (ξ < 1) at λ ¼ 0; 0.1; 0.2;…; 1 (bottom to top), in units of
NΩ=η. The corresponding critical exponents are α ¼ 1=2 (λ ≠ 0)
and α ¼ 1 (λ ¼ 0). For ξ > 1, we plot the order parameter x20;� at
λ ≠ 0 (solid curve) and λ ¼ 0 (dotted curve, which is 1=2 of the
former). Panels (a) and (b) are both valid for arbitrary N.
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where the kinetic term is obtained by expanding Eq. (4) in
powers of p2 and using ~x2 ≃ ~x20;�. This yields

Mðξ; λÞ ¼ η2
�
1 − ξ02

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ2 ~x20;�

q �−1

¼
(
η2ð1 − ξ02Þ−1 for ξ < 1

η2 ð1þλÞ2
4λ ≡Mλ for ξ ≥ 1;

ð7Þ

which is an effective mass renormalized by the interaction,
usually larger than the bare value Mð0; λÞ ¼ η2.
While fluctuations of p are generally promoted by the

interaction, and in the normal phase Eq. (7) is in agreement
with Eq. (3), an interesting competition exists in the
broken-symmetry phase: The direct enhancement, which
in the first line of Eq. (7) is due to the ξ02 factor, is partially
compensated by a backaction through the order parameter,
since a larger interaction also enhances the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ2 ~x20;�

p
denominator. The final result is a remarkable cancellation
of the two effects, leading to an effective massMλ which is
independent of ξ (or ~g).
Note that for ξ > 1 the effect of interaction is still present

(Mλ > η2) but only reflects anisotropy. As shown in
Fig. 2(a) as a function of the interaction strength, the
x-type superradiant order parameter acts as a background,
freezing the effective mass at the ξ ¼ 1 value. Furthermore,
Mðξ; λ ¼ 1Þ ¼ η2; i.e., the isotropic case has no mass
renormalization. Therefore, the special interplay between
the two quadratures of superradiance and the effective mass
is specifically related to intermediate λ.
Finite-η scaling.—We can now derive a universal form of

the critical scaling. At ξ≃ 1, the expressions ofMλ and ~E−
lead to

~Heff ≃ ~p2

2Mλ
−
1

2
þ ξξ0

2η
þ 1 − ξ2

2
~x2 þ ξ4

4η
~x4; ð8Þ

where the potential is the small-~x expansion of ~E−, valid
for h~x2i ≪ ηj1 − ξj [39]. Although the ground state ϕ0 of

Eq. (8) depends in general on t, x, η, and λ (where
t ¼ ξ − 1), it actually satisfies

�
−
1

2

∂2

∂u2 − vu2 þ u4

4

�
ϕ0ðu; vÞ ¼ E0ðvÞϕ0ðu; vÞ; ð9Þ

which is obtained by expressing Eq. (8) in terms of
the scaling variables u¼ ~xM1=6

λ and v¼tM1=3
λ . E0ðvÞ

gives the ground-state energy of Eq. (8) through the
following formula: EGðλÞ≃−1

2
þð1=2ηÞ½ð1−λÞ=ð1þλÞ� þ

M−2=3
λ E0ðtM1=3

λ Þ.
This treatment reveals the crucial role ofMλ in establish-

ing the universal scaling laws of different observables,
which are easily derived from the general form of the wave
function ϕ0ð~xM1=6

λ ; tM1=3
λ Þ. For example, we find

hx2ni ¼ ηnXnðtM1=3
λ Þ

Mn=3
λ

; hp2ni ¼Mn=3
λ PnðtM1=3

λ Þ
ηn

; ð10Þ

where the universal functions XnðvÞ and PnðvÞ are simply
the expectation values of un and ½−ið∂=∂uÞ�n over ϕ0ðu; vÞ
[35]. The validity of our treatment is confirmed by Figs. 2(b)
and 3(a), showing that the numerical values of hx2i and hp2i
at large η and different values of λ (obtained by the direct
numerical diagonalization of the full Hamiltonian H
[12,35,40]) all collapse into a single curve when appropri-
ately scaled. The two numerical scaling functions agreewith
the X1ðvÞ and P1ðvÞ obtained from Eq. (9). Thus, the
treatment provides an exact approach for the whole critical
regime and is independent of λ. We have also performed a
comparison to the variational scaling analysis at λ ¼ ξ ¼ 1
[2], which yields the exact critical exponents and an
approximate prefactor, close to our exact result [35].
We finally conclude that the presence of anisotropy does

not modify either the critical exponents or the scaling
behavior and identify the whole second-order phase tran-
sition line as belonging to the same universality class [41].
Furthermore, as we discuss next, this universality can be
extended to Eq. (1) with arbitrary N.
General N.—Although the procedure leading to Eq. (4)

does not apply when N > 1, we can follow an alternative
derivation of the mean-field potential ~E− and effective mass
Mλ, which we have identified as the crucial physical
quantities. As before, we specialize the treatment to
λ > 0, but the case λ < 0 can be treated in a similar way
or by using the following mapping: F ¼ F 1 ⊗ F 2, which
contains a Z2 symmetric mapping F 1: fHðλÞ → Hð−λÞg
and a unitary transformation F 2: fH → V†HVg, where
V ¼ e−iðπ=2Þa†a ⊗ e−iðπ=2ÞJx . For any N, F leaves the
Hamiltonian invariant. Therefore, all the properties we
discuss are readily translated to λ < 0.

~E− can be derived by applying to H the unitary trans-
formation U ¼ eiJy arctan ~gð1þλÞx= ffiffiffiffi

2η
p

, which gives

0 1 2
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(a)

M
/η

2

ξ

λ = 1.0
λ = 0.4
λ = 0.3
λ = 0.2
λ = 0.1
λ = 0.001

(b)

M
λ1/

3
〈x

2

〈

tM
λ

1/3

λ = 0.2
λ = 0.5
λ = 0.8
λ = 1.0
λ = 1.5

FIG. 2. (a) Effective mass renormalization as a function of ξ.
For ξ < 1, M ¼ η2ð1 − ξ0Þ−1, which in the absence of the
superradiant phase would diverge at ξ ¼ ð1þ λÞ=ð1 − λÞ (dashed
curves). Instead, M ¼ Mλ for ξ > 1. (b) Universal scaling
function for h~x2i. Symbols are obtained by a solution of the full
anisotropic QRM, with η ¼ 220 and different values of λ. All
numerical data collapse into the single function X1ðvÞ (solid
curve), obtained from Eq. (9).
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U† H
N
U ≃ x2

2η
þ Jx

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ2

x2

η

s
þ p2

2η
þ

ffiffiffi
2

η

s
ξ0p

Jy
N
: ð11Þ

Using hJxi≃ −N=2, we find that ~E− (given by the first two
terms) is the same of N ¼ 1; thus, the phase diagram and
order parameter are also unchanged (see Fig. 1).
While U was designed to diagonalize the coordinate

dependence inH, we should now deal with the kinetic term.
In Eq. (11), we have already performed an approximation,
by neglecting the unitary transformation of the last two
terms. This can be justified as follows: When η → ∞, the
problem approaches the classical limit; i.e., x≃ ffiffiffi

η
p

~x0;� has
a well-defined value. Under this assumption, U commutes
with the last two terms. Thus, Eq. (11) is correct to leading
order in η.
Based on Eq. (11), we can apply the second-order

perturbation theory and eliminate the off-diagonal Jy in
the same way of Eq. (3). However, in Eq. (11), the energy
gap is nonperturbatively enhanced by the superradiant

phase. It is equal to 1=N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ2 ~x0;�

q
to leading order

in η, which gives the same effective mass we have
discussed for N ¼ 1 (see Fig. 2). This alternative derivation
gives a concrete physical meaning to the denominator
leading to Eq. (7); i.e., it is a renormalized energy gap.
We can finally conclude that all these models have not

only the same phase diagram but also the same critical
behavior. This is because the finite-η scaling properties are
fully determined by ~E− and Mλ; thus, they must be
independent of N and λ. In Fig. 3(a), we verify that the
numerical scaling functions are indeed identical and
coincide with the universal result obtained from the
effective Hamiltonian [Eqs. (8) and (9)].
The JC critical line.—The λ ¼ 0 line is excluded by the

behavior we have discussed so far. For ξ > 1, it defines a
first-order transition line [27,31] where the order param-
eters and scaling functions have an abrupt change. Since the
exact mapping between opposite values of λ interchanges
the roles of x and p, the two right-hand sides of Eq. (10)

must be switched when λ < 0 (together with the changes
Mλ → M−λ and t → ξ0 − 1). This argument, however, does
not give any information on the scaling functions at λ ¼ 0.
To address this question, we have computed the correc-

tions to the energy of the unperturbed (g ¼ 0) eigenstates
jqi ⊗ j − N=2i, where jqi ¼ j0i; j1i;… are Fock states:

EJCðqÞ
N

¼ −
1

2
þ q

η
þ ξ2q
η − N

þ ξ4

η2
qðqþ N − 1Þ: ð12Þ

This expression includes all theOðη−2Þ terms and allows us
to find the energy level crossing points ξq with Oðη−1Þ
accuracy. Although Eq. (12) has an explicit dependence on
N, this disappears by solving EJCðqÞ ¼ EJCðqþ 1Þ, which
gives ξq ¼ 1þ q=ηþOðη−2Þ. Thus, the level crossings
have an equal spacing of 1=η. It is also easy to check that in
the η → ∞ limit the admixture of jqi ⊗ j − N=2i with
other states is negligible. These considerations imply
again that the scaling functions are independent of N.
Equation (10) is replaced by

hx2ni ¼ hp2ni ¼ 1þ
X∞
q¼0

θ

�
t −

q
η

�
ðhx2niqþ1 − hx2niqÞ;

ð13Þ

where hx2niq ¼ hqjx2njqi ¼ ð2n − 1Þ!!Dðn; qÞ=2n [here
Dðn; qÞ are the Delannoy numbers [42]]. The case
n ¼ 1 is shown in Fig. 3(b) and should be compared to
Figs. 2(b) and 3(a). We see that η plays the role of M1=3

λ
(which is not defined at λ ¼ 0). In particular, we have the
very peculiar finding of discontinuous scaling functions,
despite the fact that other features (e.g., the order parameter
and gap) behave like in a regular phase transition. As is
clear from our derivation, the scaling functions still reflect
the fact that the QPTof the JC limit is given by a succession
of level crossings. This is true for arbitraryN and highlights
the singular nature of the λ ¼ 0 line within the phase
diagram. In particular, the scaling functions are nonana-
lytic: They depend on the order of the two limits λ → 0
and η → ∞.
Conclusion.—We have characterized the QPTs of the

QRM as a function of the coupling strength and anisotropy
and established the universal character of the second-order
phase transition. Besides universality, we have found other
interesting features such as the freezing of the effective
mass (induced by the broken symmetry in x) and the
discontinuous scaling functions of the JC model. Our
results emphasize the critical role played by counterrotating
terms, whose current experimental relevance is due to the
rapid progress in enhancing light-matter interactions
[3–16,43,44]. In particular, the exposed singularity of the
JC limit implies that even tiny counterrotating terms lead to
dramatic changes of the scaling behavior. We also note that
the superradiant phase leads to a strongly squeezed ground
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FIG. 3. Universal scaling functions at different values of λ and
N. (a) Data collapse of numerical results, directly computed from
H or the anisotropic Dicke model (N > 1). The solid curve is
P1ðvÞ, obtained from Eq. (9). (b) Scaling function for hx2i ¼
hp2i at λ ¼ 0. The numerical values (symbols) are in agreement
with Eq. (13) (solid line).
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state of light, which has potential value for metrology and
enhanced sensing applications.
All these findings are extended toN > 1, with the simple

(but significant) consequence that the few-body QPT can be
equivalently observed at a smaller coupling strength
(gc → gc=

ffiffiffiffi
N

p
) and a larger ω=Ω (since η → Nη). A smaller

g and larger ω should make the implementation easier and
more resilient to environmental noise. From a more theo-
retical perspective, this class of physical models exhibits a
stronger form of universality, since not only the critical
exponents and scaling functions are independent onN and λ
but also other nonuniversal features, e.g., the critical
coupling and order parameter. Thus, scattered findings of
identical behavior of the N ¼ 1 and the more conventional
N → ∞ limit [1,2,26–28,31] are reconciled into a general
framework. Although we have not explicitly discussed the
critical dynamics [1,26,28], also in that case the scaling
functions are expected to be identical at arbitrary N and λ.
This is indeed true for the special case λ ¼ 0 and the two
extreme limits, N ¼ 1 or N → ∞ [26]. Another interesting
question is how interactions among the two-level systems
(see, e.g., Ref. [27]) would affect these conclusions.
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