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To investigate the performance of quantum information tasks on networks whose topology changes in
time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a
random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of
Erdös-Rényi random graphs Gðn; pÞ, where p is the probability that any two given nodes are connected:
After every time interval τ, a new graphGðn; pÞ replaces the previous one.We prove analytically that, for any
given p, there is always a range of values of τ for which the running time of the algorithm is optimal, i.e.,
Oð ffiffiffi

n
p Þ, even when search on the individual static graphs constituting the temporal network is suboptimal.

On the other hand, there are regimes of τwhere the algorithm is suboptimal evenwhen each of the underlying
static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum
spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality
and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish
high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can
exploit temporality to achieve optimal quantum information tasks on dynamical random networks.
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Temporal networks are ubiquitous: Natural, technologi-
cal, and social networks typically have time-varying
topologies. Recently, such networks have been extensively
studied at the classical level [1–5]. However, quantum
dynamics on temporal networks has largely been unex-
plored. Intuitively, one could expect that the uncontrolled
dynamical loss and emergence of links would hinder the
performance of quantum information tasks realized on
networks, namely, for communication, computation, and
sensing. But could this temporal character actually yield
any advantages for such tasks? In this work, we consider
the spatial search algorithm by continuous time quantum
walk (CTQW) [6] to find a marked node on a temporal
network and establish analytically that there are regimes
where its performance is optimal.
This algorithm was first introduced in Ref. [6] and has

been extensively studied on particular static graphs [7–10].
Furthermore, the analog version of Grover’s algorithm [11]
can be perceived as a spatial search by quantum walk on the
complete graph [6]. Recently, the algorithm was proven to
be optimal for Erdös-Rényi random graphs, i.e., graphs of n
nodes with each link existing between any two nodes with
probability p [12,13], as long as p ≥ pstatic ¼ log3=2ðnÞ=n
[14]. Moreover, as a random graph can also be obtained by
randomly removing links from a complete graph, these
results can be seen as an analysis of the robustness of
quantum search on the complete graph to a random loss of
links. Note that quantum dynamics on static Erdös-Rényi
random graphs and other complex networks has been
studied in Refs. [15,16]. Also, some properties of the
evolution of quantum walks on dynamical percolation

graphs such as the mixing time, return probabilities, and
spreading were studied in Refs. [17–19].
In this Letter, we study how the quantum spatial search

algorithm performs on random temporal networks. These
networks are obtained as a sequence of Erdös-Rényi
random graphs Gðn; pÞ: After every time interval τ, a
new graphGðn; pÞ replaces the previous one. This problem
can also be viewed as a spatial search on a complete graph
with dynamical structural defects, i.e., where links can
randomly vanish and reappear over time, as in a dynamical
percolation problem.
We define the temporality of a network as the frequency

with which a given network changes its topology
as compared to the relevant energy scale of the
Hamiltonian representing the network, and thus 1=τ is a
measure of temporality. Naturally, the introduction of this
new feature leads to a much richer behavior in the
algorithmic dynamics, as compared to the static scenario.
In fact, now the optimality of the algorithm depends
crucially on the interplay between τ and p.
In our work, we find a new threshold of p, namely,

ptemp ¼ logðnÞ= ffiffiffi
n

p
, such that for p ≥ ptemp the algorithm

is optimal irrespective of the temporality of the network. On
the other hand, we show that a sufficiently high temporality
ensures that the algorithm retains its optimality for arbi-
trarily low values of p. This holds even when the under-
lying random graphs are comprised of mostly isolated
nodes and small trees which are graphs where, in the static
case, quantum search would not provide any speedup.
Interestingly, there also exists an intermediate regime

pstatic ≤ p < ptemp where the spatial search algorithm is
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optimal on the underlying random graphs, whereas for a
certain interval of τ this is no longer the case. We find that,
when the temporality of the network coincides with the
energy scale of the Hamiltonian representing the network,
the algorithmic running time is peaked. By gradually
lowering or increasing the temporality, the running time
of the algorithm decreases and, after a certain threshold of
temporality, becomes optimal—a behavior also observed in
Ref. [20] for the analog version of Grover’s algorithm albeit
in a different context. Our results show that quantum
information processing tasks can be performed optimally
on dynamically disordered structures.
Quantum spatial search on random temporal net-

works.—A temporal network is a dynamically evolving
network of n vertices that alters its topology after a given
time interval. As a result, links appear and disappear after
every time interval. If initially the network is represented
by a graph G1, then after a time interval τ the topology
of the network changes, and we obtain a new graphG2, and
so on. Thus, within a time t, a temporal network may
be represented by a sequence of static graphs Gtemp ¼
fG1; G2;…; Gmg, where t ¼ mτ and m ∈ N.
Naturally, a random temporal network is represented by a

network that is a sequence of randomgraphs. Let us consider
Erdös-Rényi random graphs Gðn; pÞ. A random temporal
network Gtempðn; p; τÞ is a temporal sequence of Erdös-
Rényi random graphs such that, after a time t ¼ mτ, the
network will be defined as Gtempðn; p; τÞ ¼ fG1ðn; pÞ;
G2ðn; pÞ;…; Gmðn; pÞg, where Gjðn; pÞ represents the
random graph at the jth time interval. We shall focus on
the optimality of the spatial search algorithm by CTQWon
these networks and thus first introduce the algorithm briefly.
Let G represent a graph of n vertices V ¼ f1;…; ng.

We consider the Hilbert space spanned by the localized
quantum states at the vertices of the graph H ¼
spanfj1i; j2i;…; jnig. The search Hamiltonian corre-
sponding to G is given by

Hsearch ¼ −Ejwihwj − γAG; ð1Þ

where jwi corresponds to the solution node of the search
problem marked by the local site energy E, γ is a real
number, and AG is the adjacency matrix of the graph G
[21]. We set the energy scale E to be 1, such that the
quantum simulation of jwihwj for time t would correspond
to OðtÞ queries to the standard Grover oracle [6]. The
initial state of the algorithm is usually chosen to be
the equal superposition of all vertices, i.e., the state
jsi ¼ P

n
i¼1 jii=

ffiffiffi
n

p
. The quantum search algorithm is said

to be optimal on graph G if there exists a value of γ such
that, after a time T ¼ Oð ffiffiffi

n
p Þ, the probability of obtaining

the solution upon a measurement in the basis of the vertices
is jhwje−iHsearchT jsij2 ¼ Oð1Þ [6].
In order to analyze this algorithm on Gtempðn; p; τÞ,

we use two separate approaches to prove our results for

different ranges of p. For p ≥ pstatic ¼ log3=2ðnÞ=n, we use
the fact that the maximum eigenvalue of the adjacency
matrix of each of the random graphs appearing during the
time evolution is separated from the bulk of the spectrum,
and the eigenstate corresponding to it is almost surely the
initial condition of the algorithm jsi, as was shown to be the
case in Lemma 2 of Ref. [14]. To obtain the regime where
the optimality of the algorithm is maintained as a function
of τ and p, we use time-dependent perturbation theory.
However, this property about the spectrum of adjacency
matrices of random graphs does not hold when p is below
the aforementioned threshold. So, for such regimes, we
construct a linear superoperator that describes the average
dynamics of the algorithm on random temporal networks.
We present each of these approaches separately.
Quantum spatial search on random temporal networks

having p ≥ pstatic.—As long as p ≥ log3=2ðnÞ=n, the
eigenstate corresponding to the maximum eigenvalue of
the adjacency matrix of an Erdös-Rényi random graph is
almost surely the state jsi with eigenvalue np [14]. Thus,
the adjacency matrix of each of the random graphs
appearing in Gtempðn; p; τÞ satisfies this property. Let Aj

denote the adjacency matrix of the random graph appearing
at the jth time instance (i.e., after a time t ¼ jτ). Then, each
off-diagonal entry of Aj is 1 with probability p and 0 with
probability 1 − p. Let Bj ¼ Aj − npjsihsj þ pI, where Bj

is a random matrix with each off-diagonal entry having
mean 0 and variance p, with the diagonal entries being
zero, and I is the identity matrix. We define the search
Hamiltonian for Gtempðn; p; τÞ as in Eq. (1) by choosing
γ ¼ 1=ðnpÞ. By expressing each of the adjacency matrices
appearing in Gtempðn; p; τÞ as mentioned previously, we
obtain the following search Hamiltonian:

HsearchðtÞ ¼ −jwihwj − jsihsj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
H0

−
Xm
j¼1

γBjfjðt; τÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
VðtÞ

; ð2Þ

where fjðt; τÞ ¼ Θ(t − ðj − 1Þτ) − Θðt − jτÞ, where ΘðxÞ
is the Heaviside function, and m ¼ T=τ is the number of
instances of random graphs appearing throughout the evolu-
tion time of T ¼ Oð ffiffiffi

n
p Þ. Here H0 induces a rotation in the

two-dimensional subspace spanned by jwi and jsi, whereas
VðtÞ will induce a coupling between this subspace and the
n − 2 degenerate eigenspace of H0. Also, H0 is the search
Hamiltonian corresponding to the quantum walk on a com-
plete graph, where the search algorithm runs optimally [6,11].
In this case, we treat VðtÞ as a perturbation toH0 and use the
time-dependent perturbation theory. Let jψðtÞi be the wave
function of the quantum walk obtained by evolving under
HsearchðtÞ. The error probability induced by the perturbation is
thus ϵ ¼ 1 − jhwjψðTÞij2, where T ¼ Oð ffiffiffi

n
p Þ.

We are interested in calculating when the average error
probability hϵi is bounded for a given τ and p. Whenever
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hϵi ∼ oð1Þ, the algorithm outputs the solution state jwiwith
probability 1 − oð1Þ in Oð ffiffiffi

n
p Þ time. Without the loss of

generality, we intend to bound hϵi ¼ O(1= logðnÞ) [22].
We prove that the average error probability is given by (for
the derivation, see Sec. I of Supplemental Material [23]):

hϵi ¼

8><
>:

O
�

τ
p

ffiffi
n

p
�

if τ < Oð1Þ;

O
�

1
pτ

ffiffi
n

p
�

if τ ≥ Oð1Þ:
ð3Þ

First, we are interested in finding the regime of p for which
the algorithm is robust to temporality. From Eq. (3), we find
that, as long as p ≥ ptemp ¼ logðnÞ= ffiffiffi

n
p

, the average error
is bounded irrespective of any 0 < τ ≤ Oð ffiffiffi

n
p Þ. For lower

values of p, temporality becomes crucial to the optimality
of the algorithm, and in fact for the range of p between
pstatic and ptemp there exist two separate regimes of
temporality that determine the optimality of the algorithm:
a fast temporality regime and a slow temporality
regime such that, if the topology of the network alters
faster than τfast ¼ O(p

ffiffiffi
n

p
= logðnÞ) or slower than τslow ¼

O( logðnÞ=ðp ffiffiffi
n

p Þ), the algorithm remains optimal. The
behavior of the algorithm in the intermediate regime of
τfast < τ < τslow is also interesting, albeit suboptimal. As
the temporality of the network increases from τfast, the
algorithmic running time increases with it, peaking at
τ ¼ Oð1Þ, after which it gradually decreases until
τ ¼ τslow. To confirm this, we plot in Fig. 1 the average
running time of Gtempð200; 0.06; τÞ (blue dots) and
Gtempð200; 0.1; τÞ (red squares) as a function of τ. As
predicted, the average running time peaks when the
temporality 1=τ ≈ 1 and approaches the optimal running
time (solid line) away from the peak.

A similar behavior has also been observed in Ref. [20] for
the analog version of Grover’s algorithm, for the following
noise model: The authors consider a perturbation to the search
Hamiltonian in the form of a random matrix, with each entry
being a time-dependent random variable with a predefined
autocorrelation function and with a certain cutoff frequency.
The authors find that,when the cutoff frequencyof noise scales
much faster or slower than the energy scale of theHamiltonian,
the algorithm retains its optimality. On the other hand, when
they scale similarly [i.e., when the cutoff frequency of noise is
Oð1Þ], the average error is bounded by a constant only when
the ratio of the norm of the perturbation Hamiltonian and that
of the unperturbed search Hamiltonian scales as Oðn−1=4Þ.
Analogously, we find that, for networks with constant
temporality, the average error is constant when p ∼ 1=

ffiffiffi
n

p
,

in which case the aforementioned ratio is also jjVðtÞjj=
jjH0jj ¼ jjBjjj ¼ Oðn−1=4Þ, where we have used the fact
that jjBjjj ¼ Oð ffiffiffiffiffiffi

np
p Þ [24,25]. This shows that the global

features of the response of this algorithm with respect to the
typical noise time scales for these twomodels are quite similar.
Note that we also recover the scenario of the spatial

search algorithm on a static random network by choosing
τ ¼ Oð ffiffiffi

n
p Þ. In this case, the average error is always

bounded for p ≥ pstatic, thereby recovering the results of
Ref. [14].
Quantum spatial search on random temporal networks

having p < pstatic.—Here we prove that, for random
temporal networks with a sufficiently high temporality,
the spatial search algorithm is optimal for arbitrarily low p.
For this regime of p, the results obtained previously no
longer hold, as jsi is not an eigenstate of the adjacency
matrix (and np is no longer the maximum eigenvalue) of an
Erdös-Rényi random graph. For p < logðnÞ=n, the under-
lying random graphs are no longer connected [26].
Moreover, for p ≪ 1=n, the static random graphs appear-
ing during the time evolution of the algorithm are extremely
sparse and are mostly comprised of isolated nodes and
trees. In particular, we shall focus on finding a regime of
optimality of the search algorithm for p ≤ 1=n, while we
refer the reader to Sec. II of Supplemental Material for
results when 1=n < p < pstatic [23].
In this regime, we follow a different approach: We

consider the evolution of the quantum state averaged over
all possible realizations of a random graph using the density
matrix formalism. The number of possible realizations of
Gðn; pÞ is jGj ¼ 2N , where N ¼ ðn

2
Þ. The average dynam-

ics of the algorithm on a random temporal network after
one time step τ is described by the following superoperator:

ΦðρÞ ¼
XjGj
r¼1

pre−iHrτρeiHrτ ¼ he−iHrτρeiHrτi; ð4Þ

where pr is the probability of the rth realization and Hr ¼
jwihwj þ γAGr

with AGr
being the adjacency matrix corre-

sponding to the rth realization ofGðn; pÞ. Let hXi represent

FIG. 1. Average running time of the quantum spatial search
algorithm as a function of τ for Gtempð200; 0.06; τÞ (in blue dots)
and Gtempð200; 0.1; τÞ (in red squares). Each point is averaged
over 100 realizations. As predicted, the average running time
peaks at τ ∼ 1, when the temporality coincides with the energy
scale of the search Hamiltonian. Away from this peak, the average
running time decreases gradually towards the optimal running
time (indicated by the solid line).
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the expected value ofX. The evolution of the algorithm after
m ¼ Oð ffiffiffi

n
p

=τÞ time steps is given byΦmðρÞ. The first-order
expansion of the superoperator yields

ΦðρÞ ¼ hρ − iτ½Hr; ρ�i þ δ ð5Þ
¼ ρ − iτ½jwihwj þ jsihsj; ρ� þ δ ð6Þ
¼ Φ0ðρÞ þ δ; ð7Þ

where the second step follows because the expected value
of each entry of AGr

is p and so hAGr
i ¼ npjsihsj. Thus,

hHri ¼ jwihwj þ jsihsj, which is the same asH0 defined in
Eq. (2) and is optimal for quantum spatial search. Here δ is
the error induced by truncating the superoperator Φ after
the first order and is given by δ ≤

P∞
k¼2ðτk=k!ÞhjjHk

r jji.
Note that the superoperatorΦm

0 describes approximately the
standard evolution of the algorithm under the Hamiltonian
hHri, and thus we intend to bound the error obtained by
using the superoperatorΦ instead of the superoperatorΦ0 to
describe the dynamics for each of the m time steps. This is
given by

ϵ ¼ jjΦmðρÞ −Φm
0 ðρÞjj ≤ mδ: ð8Þ

Thus, to bound ϵwe need to bound hjjAGr
jji. Since p ≤ 1=n,

the underlying random networks are extremely sparse, con-
taining isolated nodes and few links. Thus, jjAGr

jj is bounded

by the sum of the individual links of the random graphs.
As p decreases further (i.e., p ≪ 1=n), the aforementioned
bound is better, as the underlying networks have fewer and
fewer links. For a given range of p, we find the bound for τ
where ϵ ≤ O(1= logðnÞ). In fact, we obtain that (for the
derivations, refer to Sec. II of Supplemental Material [23])

τ ≤

( 1
n5=2 logðnÞ if 1=n2 ≤ p ≤ 1=n;

pffiffi
n

p
logðnÞ if p < 1=n2:

ð9Þ

In general, our results imply that, although p is well below
the percolation threshold, and in fact the temporal network
consists of graphs that do not have giant components and are
mostly composed of isolated nodes and trees ofOð1Þ nodes, a
sufficiently high temporality can still lead to optimal search.
This cannot be achieved by performing a quantum walk on
any of these structures appearing as a static network. This has
been confirmed in Fig. 2, wherein we plot (in blue points) the
average running time of the quantum spatial search algorithm
on random temporal networks Gtempð50; 0.0008; τÞ with a
value of p that is way below the percolation threshold
ðp ¼ 2=n2Þ. As expected, for sufficiently low values of τ,
the running time of the algorithm is close to the optimal
running time of T ¼ π

ffiffiffi
n

p
=2 (solid line) and increases as τ is

increased. We summarize the regimes of τ and p where the
algorithm is optimal in Fig. 3. See Supplemental Material for
derivations [23].
Discussion.—We have proven analytically that, for any

given p, there is always a range of values of τ for which
the running time of the spatial search algorithm by CTQW
on a random temporal network Gtempðn; p; τÞ is optimal,
i.e., Oð ffiffiffi

n
p Þ. Indeed, we find that the nontrivial interplay

between p and the temporality of the network is key to the
algorithm’s performance (see Fig. 3).
We obtain a threshold ptemp ¼ logðnÞ= ffiffiffi

n
p

, above which
the algorithm is optimal irrespectively of τ, i.e., of how fast
or slowly the links appear and disappear in the dynamical
network.
We also find that, for sufficiently low values of τ, the

algorithm is optimal for any value of p. This means that
a high temporality allows an optimal performance even
when p is well below the static percolation threshold, i.e.,
when the underlying static graphs are comprised mostly of
isolated nodes and trees of constant depth.
Interestingly, for pstatic < p < ptemp, the algorithm is

optimal on each static random graph but not always on the

FIG. 2. Average running time of the quantum spatial search
algorithm on Gtempð50; 0.0008; τÞ (dots) as a function of τ. Each
point is averaged over 50 realizations. Note thatp ¼ 2=n2, and even
then, for small enough τ, the algorithm runs in optimal time (solid
line). As τ is increased, the algorithmic running time increases.

FIG. 3. Summary of analytical results: thresholds of τ above or below which the quantum spatial search algorithm on a random
temporal network of n nodes is optimal for a given range of p.
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temporal network composed by the sequence of such
graphs. In the suboptimal regime, the algorithmic running
time is peaked when the temporality of the network
coincides with the energy scale of the search
Hamiltonian. We can move away from this regime by
decreasing or increasing the temporality: The running time
of the algorithm will then decrease accordingly, reaching
the optimal performance at τslow or τfast, respectively.
Note that our results on spatial search can also be

extended to perform high-fidelity state transfer of a qubit
between any two nodes of a random temporal network
[14,27,28].
Finally, our findings can also be interpreted as an

analysis of the robustness of the quantum spatial search
algorithm and the state transfer protocol on a complete
graph with dynamical structural defects. Furthermore,
they pave the way to study quantum dynamics on non-
Markovian temporal networks [29], as well as to exploit
temporality as a control mechanism to improve or protect
the effectiveness and efficiency of quantum information
tasks on dynamical networks.
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