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A communication game consists of distributed parties attempting to jointly complete a task with
restricted communication. Such games are useful tools for studying limitations of physical theories. A
theory exhibits preparation contextuality whenever its predictions cannot be explained by a preparation
noncontextual model. Here, we show that communication games performed in operational theories reveal
the preparation contextuality of that theory. For statistics obtained in a particular family of communication
games, we show a direct correspondence with correlations in spacelike separated events obeying the no-
signaling principle. Using this, we prove that all mixed quantum states of any finite dimension are
preparation contextual. We report on an experimental realization of a communication game involving three-
level quantum systems from which we observe a strong violation of the constraints of preparation
noncontextuality.
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Introduction.—Communication games are tools by
which one can study fundamental limiting features of
physical theories in terms of their ability to process
information [1–3]. In these games, a number of parties
intend to jointly solve a task despite the amount and type of
communication being constrained by some rules. Thus, the
task can be solved only with some probability, which
depends on the theory by which they are assumed to
operate. Therefore, communication games are frequent
tools for identifying and quantifying quantum advantages
over classical theories [4–10].
Interestingly, there are known examples of communica-

tion games in which the better-than-classical performance
constitutes a certificate of the system lacking a preparation
noncontextual ontological model [11–13]. An ontological
model is a way of explaining the physics of an operational
theory, by assuming that there are independent and objec-
tive (ontic) states subject to experiment. However, speci-
fying a preparation does not necessarily specify the ontic
state. A preparation may be represented by a distribution μ
over the ontic states. Let two preparations P1 and P2

associated to distributions μ1 and μ2 be indistinguishable,
i.e., satisfy pðbjP1;MÞ ¼ pðbjP2;MÞ for any measure-
ment M with outcome b. The assumption of preparation
noncontextuality asserts that no additional features (called
contexts) influence the physics of the preparations and,
therefore, asserts that both preparations have equivalent
representation in the ontological model: μ1 ¼ μ2 [14]. If a
theory does not satisfy this assumption, it is said to be
preparation contextual. Preparation contextuality has been
shown relevant for many foundational topics [3,15–18].
Here, we show that the performance of an operational

theory in communication games constitutes a certificate

of that theory exhibiting preparation contextuality.
Specifically, we introduce communication constraints
which keep the receiver oblivious about subsets of the
information held by the sender. Preparation noncontextual-
ity imposes a bound on the performance of any communi-
cation game executed under such an obliviousness
constraint. This bound is violated by preparation contextual
theories. Subsequently, we show how to understand no-
signaling correlations from spacelike separated measure-
ments (perhaps violating a Bell inequality) through a
subclass of communication games. In particular, we find
that quantum preparation contextuality manifested in com-
munication games imposes a quantitative bound on quantum
nonlocality (i.e., Bell inequality violations). Furthermore,
we apply this result to resolve an open problem in this field:
Which quantum states are preparation contextual? We show
that all mixed quantum states in any finite dimension are
preparation contextual. Finally, we present an experimental
implementation of a quantum strategy in a specific com-
munication game, inspired by the Collins-Gisin-Linden-
Massar-Popescu (CGLMP) Bell inequality, in which three-
level quantum systems are communicated.We certify a large
violation of a preparation noncontextuality inequality.
Communication games.—In a two-player communication

game, a party Alice (Bob) holds a set of data denoted x ∈ IA
(y ∈ IB) with associated probability distribution pAðxÞ
[pBðyÞ]. Alice encodes x by preparing a state which is sent
toBob,whoattempts to decode itwith ameasurement labeled
y. This returns anoutcomeb. Subsequently, a payoffCbx;y ∈ R
is awarded. The average payoff earned by the partnership is

A≡X

x∈IA

X

y∈IB

Cbx;ypAðxÞpBðyÞpðbjx; yÞ: ð1Þ
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Equation (1) quantifies the performance in the game.
However, the content of Alice’s communication to Bob is
restricted by some communication constraints. These ensure
that the game is nontrivial; i.e., Alice cannot simply send x to
Bob. A suitable choice of these constraints enables the
connection to tests of preparation contextuality.
Communication games as tests of preparation

contextuality.—An operational theory is said to be prepa-
ration noncontextual [14] if operationally equivalent prep-
arations imply equivalent distributions over the ontic states:

∀y ∀ b∶ pðbjx; yÞ ¼ pðbjx0; yÞ ⇒ pðλjxÞ ¼ pðλjx0Þ;
ð2Þ

where λ is a hidden variable, x and x0 are two preparations,
and y denotes a measurement.
We will now define a class of communication constraints

which enables a connection to the premise of Eq. (2). The
assumption of preparation noncontextuality then leads to a
preparation noncontextuality inequality in which the per-
formance in the communication game is the operator.
Construct L subsets of the space IA; Sk ⊂ IA for

k ¼ 1;…; L. Now, choose communication constraints as
follows: Impose an obliviousness constraint

∀ y; b; k; k0∶
1

qk

X

x∈Sk

pðxjb; yÞ ¼ 1

qk0

X

x∈Sk0
pðxjb; yÞ: ð3Þ

Here qk ¼ pðx ∈ SkÞ ¼
P

x∈SkpAðxÞ serves as a normali-
zation. In other words, Eq. (3) states that, no matter the
performed measurement and observed outcome, Bob gains
no information, as compared to what he knew before the
communication, about to which set Sk the data x of Alice
belong. Let us now apply Bayes’ rule to the above
summands: pðxjb; yÞ ¼ pðbjx; yÞpðxjyÞ=pðbjyÞ. Since x
and y are independent, Eq. (3) becomes

∀y ∀ b∶
X

x∈Sk

pðbjx; yÞpAðxÞ
qk

¼
X

x∈Sk0
pðbjx; yÞpAðxÞ

qk0
:

ð4Þ

Note that each side is a convex combination, since
fpAðxÞ=qkgx∈Sk is a probability distribution over the set
Sk. Now, note that the probability that the outcome b
was obtained from a measurement on a preparation
associated to Sk is the convex mixing of its constitutes:
pðbjx ∈ Sk; yÞ ¼

P
x∈Skpðbjx; yÞpAðxÞ=qk. Similarly, the

distribution of the hidden variable is pðλjx ∈ SkÞ ¼P
x∈SkpðλjxÞpAðxÞ=qk. Putting it all together, we have

∀y ∀ b∶ pðbjx ∈ Sk; yÞ ¼ pðbjx ∈ Sk0 ; yÞ, which takes
the form of the premise of the preparation noncontextuality
statement in Eq. (2). Thus, preparation noncontextuality
imposes that pðλjx ∈ SkÞ ¼ pðλjx ∈ Sk0 Þ. Using Bayes’

rule, we find that pðx ∈ SkjλÞ=qk ¼ pðx ∈ Sk0 jλÞ=qk0 .
This means that, despite knowledge of the hidden variable,
Eq. (3) remains satisfied.
Given any λ, Alice encodes x classically knowing that the

obliviousness constraint is satisfied. Therefore, the prepa-
ration noncontextual bound ppnc of Eq. (1) is obtained from
maximizing Eq. (1) over all classical encodings respecting
the obliviousness constraint. Hence, A ≤ ppnc is a prepa-
ration noncontextuality inequality. ▪
Clearly, for a given communication game, there are a

plethora of ways in which one can choose the obliviousness
constraint and construct the associated preparation non-
contextuality inequality. In what follows, we will examine
some interesting cases of the presented framework.
Communication games based on Bell inequalities.—

Consider a general bipartite Bell experiment in which
Alice and Bob share a two-particle state with each of them
choosing measurements X ∈ f1;…; mAg, for some pos-
itive integer mA, and Y ∈ f1;…; mBg, for some positive
integer mB, sampled from a distribution pAðXÞ and pBðYÞ,
respectively. Each measurement returns an outcome
a; b ∈ f1;…; dg. From the resulting probability distribu-
tion pða; bjX; YÞ, one constructs a general Bell inequality

Ib ≡
X

abXY

Ca;bX;YpAðXÞpBðYÞpða; bjX; YÞ ≤ C; ð5Þ

where C is the local realist bound and Ca;bX;Y are real
coefficients.
In the following, we construct a family of communica-

tion games and obliviousness constraints inspired by
such Bell experiments. Alice is given inputs ðx; x0Þ ∈
f1;…; mAg × f1;…; dg admitting the distribution
pðx0; xÞ ¼ pgðx0jxÞpAðxÞ, with pAðx ¼ iÞ ¼ pAðX ¼ iÞ
whereas pgðx0jxÞ is yet to be specified. Bob has an input
y ∈ f1;…; mBg with distribution pBðy ¼ iÞ ¼ pBðY ¼ iÞ.
The inputs ðx0; x; yÞ in the communication game, respec-
tively, correspond to ða; X; YÞ in the Bell experiment.
Having received Alice’s communication, Bob earns a
payoff Cx0;bx;y if he outputs b given a measurement of y
and that Alice held ðx0; xÞ. The performance is written

Ig½fpgðx0jxÞgx�
≡ X

x0xyb

Cx0;bx;y pAðxÞpBðyÞpgðx0jxÞpðbjx0; x; yÞ: ð6Þ

Notice that, for every choice of fpgðx0jxÞgx, we have a
different communication game.
Alice’s communication must satisfy the following oblivi-

ousness constraint. Partition Alice’s mAd possible inputs
into mA sets each containing d elements; we define Sk ¼
fx0xjx ¼ kg for k ¼ 1;…; mA. The obliviousness con-
straint requires that Bob gains no information about to
which Sk the data ðx0; xÞ belong. Inserting this into Eq. (4)
with qk ¼ pAðx ¼ kÞ and using Bayes’ rule, we obtain
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∀ b;y;k;k0∶
Xd

x0¼1

pðx0;bjx¼ k;yÞ ¼
Xd

x0¼1

pðx0;bjx¼ k0;yÞ:

ð7Þ
This constraint is an analogy of the directed no-signaling
principle imposed by special relativity on correlations in
spacelike separated measurement events: The probability of
Bob’s outcome marginalized over Alice’s input x0 is
independent of Alice’s other input x. One needs only to
relabel x0 by a and ðx; yÞ by ðX; YÞ to recover the
corresponding statement in Bell experiments.
On the one hand, imagine we run a Bell experiment and

achieve some value of Ib. Using Bayes’ theorem and the
obliviousness constraint (7), it is straightforwardly shown
that if we choose the communication game in which pg

coincides with the observed marginals of Alice, pðajXÞ,
one finds Ig ¼ Ib. We explicitly consider the case of the
quantum theory. In a Bell experiment, when Alice performs
her measurement X, she renders Bob’s local state in one of
d possible states labeled ϱXl for l ¼ 1;…; d. The probability
of Bob’s local state being ϱXl is the probability of Alice
obtaining outcome l, i.e., pða ¼ ljXÞ. No signaling implies
that the average state of Bob is independent of the
measurement choice X of Alice. We associate for every
X the set fϱXl gdl¼1 to the states in SX prepared by Alice in
our communication game. As shown, these will necessarily
satisfy the obliviousness constraint (7) while by construc-
tion returning the same performance in the communication
game (6) as in the Bell experiment, namely, Ig ¼ Ib.
On the other hand, imagine we have not specified

pgðx0jxÞ. Let λ index all functions fλðxÞ∶f1;…; mAg →
f1;…; dg. By choosing a suitable probability distribution
μðλÞ, we can write pgðx0jxÞ ¼

P
λμðλÞDAðx0jxλÞ, where

DAðx0jxλÞ ¼ δfλðxÞ;x0 . Alice then communicates λ, which
contains no information about x, to Bob, who decodes the
message using some strategy DB. We find

Ig¼
X

x0xyb

Cx0;bx;y pAðxÞpBðyÞ
X

λ

μðλÞDAðx0jxλÞDBðbjyλÞ: ð8Þ

This is precisely the notion of local realistmodels for theBell
experiment (5). Hence, if we choosepgðx0jxÞ such that there
is a local hidden variable strategy that both (i) has
pgðx0jxÞ ¼ pðajXÞ as a marginal of Alice and (ii) saturates
the local realist bound C of (5), the preparation noncontex-
tuality inequality Ig ≤ C will be tight. Of particular interest
is to choose pgðx0jxÞ such that it coincides with Alice’s
marginals in a maximal violation of a Bell inequality given
someoperational no-signaling theory. Then,we assert that Ig
can witness a violation of preparation noncontextuality
corresponding to the maximal Bell inequality violation.
Note that only very particular obliviousness constraints

and communication games retain the analogy to the
no-signaling principle through our construction. In
Ref. [19], we present a family of games that is not of the

type presented in this section. The corresponding preparation
noncontextuality inequalities are many-outcome generaliza-
tionsof the those based onparity-obliviousmultiplexing [11].
Quantum preparation contextuality limits maximal

quantum nonlocality.—If Alice and Bob share entangled
states, all mixed states can be prepared on Bob’s side by
considering the average of his local state computed over the
outcomes of Alice obtained from some measurement. Thus,
due to our previous discussion, it follows that the maximal
quantum violation of a bipartite Bell inequality is a limi-
tation imposed by the preparation contextuality allowed in
the quantum theory. This generalizes the result of Ref. [3],
showing this statement for the Clauser-Horne-Shimony-
Holt inequality [20]. We exemplify this generalization by
shining light on the numerical quantum violations of the
preparation noncontextuality inequalities considered in
Ref. [13]. These inequalities were based on communication
games which happen to admit an obliviousness constraint of
the form considered in the above section. The corresponding
Bell inequalities were in fact studied in Ref. [21] in a
different context. Comparing the numerics for quantum
preparation contextuality [13] and the quantum nonlocality
[21], one indeed finds that these agree very accurately.
All mixed states are preparation contextual.—The max-

imally mixed quantum state of dimension d ¼ 2, 3, 4, 5 is
known to be preparation contextual [13,14]. So is every
mixed qubit state [22]. Our mapping between communi-
cation games and Bell inequalities allows us to straight-
forwardly show that all mixed quantum states of any
dimension d are preparation contextual. For this purpose,
consider the CGLMP Bell inequality [23], which is a
bipartite facet Bell inequality with d outcomes for both
observers. For any d, this inequality can be violated by all
pure bipartite entangled states of dimension d [24]. Hence,
all possible mixed quantum states of dimension d can
appear as the average state of Bob after either of Alice’s
measurements. That average state is just the state of Bob’s
part of the entangled system. Since quantum strategies in
the Bell scenario can be mapped to quantum strategies in a
communication game (of the form previously discussed)
testing preparation contextuality, it follows that all mixed
quantum states of dimension d are preparation contextual.
A specific communication game.—Let us focus on the

CGLMP Bell inequality with d ¼ 3 and construct the
preparation noncontextuality inequality based on the asso-
ciated communication game. Following our previous dis-
cussion, we let Alice hold x ¼ x0x ∈ f0; 1; 2g × f0; 1g
with pðx0; xÞ ¼ 1=6 and Bob hold y ∈ f0; 1g with
pðyÞ ¼ 1=2. In order to satisfy the obliviousness constraint,
Alice’s communication ρx0x must in the quantum theory
obey

P
2
x0¼0 pðx0jx ¼ 0Þρx00 ¼

P
2
x0¼0 pðx0jx ¼ 1Þρx01.

Since the preparation noncontextual bound coincides with
the local bound of the CGLMP inequality (which achieves
its maximal quantum violation with uniform marginals on
Alice), our preparation noncontextuality inequality reads
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A3 ≡ 1

12

X

x0xyk

ð−1Þkpðb ¼ Tkjx0; x; yÞ ≤ 1=2; ð9Þ

where Tk ¼ x0 − ð−1Þxþyþkk − xy mod 3 for k ¼ 0, 1. The
maximal quantum violation of the CGLMP Bell inequality
is A3 ¼ ð3þ ffiffiffiffiffi

33
p Þ=12 ≈ 0.7287 [25], which immediately

translates into an equal quantum violation of the inequality
(9). In Ref. [19], we give the details of the corresponding
quantum strategy in the communication game.
Experiment.—We experimentally confirm the above

prediction of quantum preparation contextuality. The
experimental implementation of the communication game
uses three-path encoding for preparing qutrits. Single
photons are initially prepared in the jHi polarization state
by the use of polarization fiber controllers in a single-mode
fiber (SMF). The qutrit state is prepared using the two
spatial modes of three polarization beam splitters (PBSs)
(see Fig. 1). The states required for the game, jψ ini ¼
cosð2χ1Þj0i þ sinð2χ1Þ sinð2χ2Þj1i þ sinð2χ1Þ cosð2χ2Þj2i,
are prepared by suitably orienting the half-wave plates
(HWPs) χ1 and χ2. Details are given in Ref. [19].
We use a heralded single-photon source generating twin

photons at 780 nm by spontaneous parametric down-
conversion. In this process, a nonlinear crystal type II
(β-barium borate) is pumped using a high-power femto-
second laser such that a pump photon probabilistically
converts into two lower-energy photons, called the signal
and idler. The twin photons pass through a 3 nm filter and
are coupled into single-mode fibers to have well-defined

spatial and spectral properties. A detection of the idler then
heralds the signal photon.
The corresponding experimental setup consists of three

subsequent interferometers comprising of single-photon
interferometers between all three paths followed by a stable
and compact Sagnac interferometer, such that, while per-
forming a measurement in a given measurement basis, the
state is projected into basis vectors of the chosen basis. The
protocol requires measurements in the computational basis
and a second basis defined in Ref. [19]. Moreover, state
tomography is performed using measurements in four
mutually unbiased bases (MUBs), so that the total set of
measurements is informationally complete [26]. For this
purpose, the choice of a givenmeasurement basis is enabled
by suitable orientations of the HWPs θ1, θ2, and θ3 (see
Table I in Ref. [19]) and by the introduction of a phase
(ϕi; i ∈ 1; 2; 3) between the special modes by employing a
set of three wave plates QWP-HWP-QWP (phase shifter
box) geometries at different tilding positions [27].
A measurement projects the state onto the basis vectors.

These are represented by the spatialmodes of the twoPBSs in
the Sagnac interferometer (denoted by jαi, jβi, and jγi). In
our experiment, the photons arriving at jαi, jβi, and jγi are
collected by multimode fibers that are in turn coupled
to single-photon silicon avalanche photodiodes from
Excelitas Technologies with an effective detection efficiency
ηd ¼ 0.55. A home-built field-programmable gate array-
based timing system records the coincidence events between
the arriving and trigger (idler) photons with a detection time
window of 1.7 ns. The number of detection events at each
detector is used to compute the respective probabilities. In
each measurement round, approximately 60000 photons
were detected per second. The measurement time was 10 s.
From the measured probabilities, we computed Apri

3 ≈
0.7172� 0.0365, which is in good agreement with the
theoretical prediction. We reconstructed the states using
variational quantum tomography [26,28] and the exper-
imental results from four MUBs. We found the following
fidelities for the six states: jψ11i ∼ 0.9826, jψ12i ∼ 0.9804,
jψ13i ∼ 0.9893, jψ21i∼0.9838, jψ22i∼0.9876, and jψ23i∼
0.9840. These small imperfections cause the obliviousness
constraint not to be perfectly satisfied. Next, we shall see
how to overcome this issue.
Data analysis.—Reference [29] constructed a method in

which one maps measured outcome probabilities (primary
data), which does not perfectly satisfy a strict equivalence
constraint, into another set of probabilities (secondary data)
that satisfies that equivalence constraint. Then, one uses the
secondary data to calculate the parameter of interest in the
experiment. We will use this method to strictly enforce
the obliviousness constraint and then compute A3.
The primary data in our experiment consist of six 2 × 3

matrices [one for each preparation ðx0; xÞ] with elements
Px0x
i;j ≡ Plabðjjx0; x; iÞ corresponding to performing meas-

urement i in the laboratory and obtaining outcome j. Wewill

FIG. 1. Experimental setup. Suitable settings of χ1 and χ2 allow
us to produce the desired qutrit states for the task. Measurement
basis selection is implemented by appropriate settings of HWPs
θ1, θ2, and θ3 and by setting the total experimental phase
(ϕi; i ∈ 1; 2; 3) between path modes by employing a phase shifter
box (QWP-HWP-QWP) inside the setup. Detection events in
detectors jαi, jβi, and jγi are used to obtain the respective
probabilities.
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assume that the underlying physical theory governing
the system is linear, allowing us to search for secondary
data in the form of six other matrices fP0x0xgx0;x that are in
the convex hull of fPx0xgx0;x. That is, we let ∀x0;x∶P0x0;x¼P

2
x0
0
¼0

P
1
x0¼0

wx0x
x0
0
;x0P

x0
0
;x0 , where ∀ x0; x∶ wx0x

x0
0
;x0 is a proba-

bility distribution. We seek secondary data which (i) satisfy
the obliviousness constraint and (ii) on average are as close
to the primary data as possible. This corresponds to a linear
program:

S≡max
fwg

1

6

X2

x0¼0

X1

x¼0

wx0;x
x0;x;

such that
X

x0

P0x00 ¼
X

x0

P0x01: ð10Þ

We find S ≈ 0.9938, indicating that the secondary data are
close to the primary data. Using the secondary data to
compute A3, we obtain Asec

3 ≈ 0.7118� 0.0365. This is only
marginally smaller than Apri

3 . It is in good agreement with the
theoretical prediction of the quantum theory and strictly
satisfies the obliviousness constraint.
Conclusions.—We have established relations between

operational statistics in a class of communication games
and tested preparation contextuality. We showed close
relations between quantum nonlocality and quantum corre-
lations in such communication games and also shown all
mixed quantum states of finite dimension to be preparation
contextual. Furthermore, we provided an experimental dem-
onstration of a quantum communication game showing a
large violation of a preparation noncontextuality inequality.
We conclude with some open problems: (i) Do commu-

nication games without obliviousness constraints admit a
connection to some operational physical assumption in the
same spirit as presented here for games respecting an
obliviousness constraint? (ii) Are generalizations of the
presented framework to more than two players possible?
(iii) Can the considered communication games be used in
one-sided device-independent cryptography protocols?

The authors thank Adán Cabello, Nicolas Gisin, Nicolas
Brunner, Thiago Maciel, and Artur Matoso for the useful
discussions and comments. We extend particular gratitude
to Debashis Saha and Anubhav Chaturvedi for enlightening
comments and criticism. The project was financially
supported by Knut and Alice Wallenberg foundation and
the Swedish research council. A. T. acknowledges financial
support from the Swiss National Science Foundation
(starting grant DIAQ). B. M. is supported by FAPESP
No. 2014/27223-2.

A. H. and A. T. contributed equally for this project.

*bmgt@if.usp.br
[1] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A.

Winter, andM.Żukowski, Nature (London) 461, 1101 (2009).

[2] A. Grudka, K. Horodecki, M. Horodecki, W. Kłobus, and
M. Pawłowski, Phys. Rev. Lett. 113, 100401 (2014).

[3] M. Banik, S. S. Bhattacharya, A. Mukherjee, A. Roy,
A. Ambainis, and A. Rai, Phys. Rev. A 92, 030103(R)
(2015).

[4] R. Gallego, N. Brunner, C. Hadley, and A. Acín, Phys. Rev.
Lett. 105, 230501 (2010).

[5] M. Hendrych, R. Gallego, M. Micuda, N. Brunner, A. Acín,
and J. P. Torres, Nat. Phys. 8, 588 (2012).

[6] J. Ahrens, P. Badziag, A. Cabello, and M. Bourennane, Nat.
Phys. 8, 592 (2012).

[7] M. Pawłowski and N. Brunner, Phys. Rev. A 84, 010302(R)
(2011).

[8] H.-W. Li, M. Pawłowski, Z.-Q. Yin, G.-C. Guo, and Z.-F.
Han, Phys. Rev. A 85, 052308 (2012).

[9] V. D’Ambrosio, F. Bisesto, F. Sciarrino, J. F. Barra, G.
Lima, and A. Cabello, Phys. Rev. Lett. 112, 140503 (2014).

[10] A. Tavakoli, A. Hameedi, B. Marques, and M. Bourennane,
Phys. Rev. Lett. 114, 170502 (2015).

[11] R. W. Spekkens, D. H. Buzacott, A. J. Keehn, B. Toner, and
G. J. Pryde, Phys. Rev. Lett. 102, 010401 (2009).

[12] A. Chailloux, I. Kerenidis, S. Kundu, and J. Sikora, New J.
Phys. 18, 045003 (2016).

[13] A. Ambainis, M. Banik, A. Chaturvedi, D. Kravchenko, and
A. Rai, arXiv:1607.05490.

[14] R. W. Spekkens, Phys. Rev. A 71, 052108 (2005).
[15] R. W. Spekkens, Phys. Rev. Lett. 101, 020401 (2008).
[16] M. F. Pusey, Phys. Rev. Lett. 113, 200401 (2014).
[17] M. S. Leifer and O. J. E. Maroney, Phys. Rev. Lett. 110,

120401 (2013).
[18] R. Kunjwal and R.W. Spekkens, Phys. Rev. Lett. 115,

110403 (2015).
[19] SeeSupplementalMaterialathttp://link.aps.org/supplemental/

10.1103/PhysRevLett.119.220402 for (i) the theory part of
SM shows a family of preparation noncontextuality inequal-
ities based on parity-obliviousness and the details of the
quantum strategy realized by the experiment, (ii) the exper-
imental part of SM shows details for the experimental settings
and the results obtain by our implementation.

[20] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Phys. Rev. Lett. 23, 880 (1969).

[21] A. Tavakoli, B.Marques,M. Pawłowski, andM.Bourennane,
Phys. Rev. A 93, 032336 (2016).

[22] M. Banik, S. S. Bhattacharya, S. K. Choudhary, A.
Mukherjee, and A. Roy, Found. Phys. 44, 1230 (2014).

[23] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu,
Phys. Rev. Lett. 88, 040404 (2002).

[24] J.-L. Chen, D.-L. Deng, and M.-G. Hu, Phys. Rev. A 77,
060306(R) (2008).

[25] A. Acin, T. Durt, N. Gisin, and J. I. Latorre, Phys. Rev. A 65,
052325 (2002).

[26] D. S. Gonçalves, C. Lavor, M. A. Gomes-Ruggiero, A. T.
Cesário, R. O. Vianna, and T. O. Maciel, Phys. Rev. A 87,
052140 (2013).

[27] B. G. Englert, C. Kurtsiefer, and H. Weinfurter, Phys. Rev.
A 63, 032303 (2001).

[28] T. O. Maciel, A. T. Cesário, and R. O. Vianna, Int. J. Mod.
Phys. C 22, 1361 (2011).

[29] M. D. Mazurek, M. F. Pusey, R. Kunjwal, K. J. Resch, and
R.W. Spekkens, Nat. Commun. 7, ncomms11780 (2016).

PRL 119, 220402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

1 DECEMBER 2017

220402-5

https://doi.org/10.1038/nature08400
https://doi.org/10.1103/PhysRevLett.113.100401
https://doi.org/10.1103/PhysRevA.92.030103
https://doi.org/10.1103/PhysRevA.92.030103
https://doi.org/10.1103/PhysRevLett.105.230501
https://doi.org/10.1103/PhysRevLett.105.230501
https://doi.org/10.1038/nphys2334
https://doi.org/10.1038/nphys2333
https://doi.org/10.1038/nphys2333
https://doi.org/10.1103/PhysRevA.84.010302
https://doi.org/10.1103/PhysRevA.84.010302
https://doi.org/10.1103/PhysRevA.85.052308
https://doi.org/10.1103/PhysRevLett.112.140503
https://doi.org/10.1103/PhysRevLett.114.170502
https://doi.org/10.1103/PhysRevLett.102.010401
https://doi.org/10.1088/1367-2630/18/4/045003
https://doi.org/10.1088/1367-2630/18/4/045003
http://arXiv.org/abs/1607.05490
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevLett.101.020401
https://doi.org/10.1103/PhysRevLett.113.200401
https://doi.org/10.1103/PhysRevLett.110.120401
https://doi.org/10.1103/PhysRevLett.110.120401
https://doi.org/10.1103/PhysRevLett.115.110403
https://doi.org/10.1103/PhysRevLett.115.110403
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.220402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.220402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.220402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.220402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.220402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.220402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.220402
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevA.93.032336
https://doi.org/10.1007/s10701-014-9839-4
https://doi.org/10.1103/PhysRevLett.88.040404
https://doi.org/10.1103/PhysRevA.77.060306
https://doi.org/10.1103/PhysRevA.77.060306
https://doi.org/10.1103/PhysRevA.65.052325
https://doi.org/10.1103/PhysRevA.65.052325
https://doi.org/10.1103/PhysRevA.87.052140
https://doi.org/10.1103/PhysRevA.87.052140
https://doi.org/10.1103/PhysRevA.63.032303
https://doi.org/10.1103/PhysRevA.63.032303
https://doi.org/10.1142/S0129183111016981
https://doi.org/10.1142/S0129183111016981
https://doi.org/10.1038/ncomms11780

