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We use the ab initio Bethe ansatz dynamics to predict the dissociation of one-dimensional cold-atom
breathers that are created by a quench from a fundamental soliton. We find that the dissociation is a robust
quantum many-body effect, while in the mean-field (MF) limit the dissociation is forbidden by the
integrability of the underlying nonlinear Schrödinger equation. The analysis demonstrates the possibility to
observe quantum many-body effects without leaving the MF range of experimental parameters. We find
that the dissociation time is of the order of a few seconds for a typical atomic-soliton setting.
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Under normal conditions, interacting quantum Bose
gases do not readily exhibit signatures of their corpuscular
nature, but rather follow the behavior predicted by mean-
field (MF) theory. The observability of microscopic quan-
tum effects involving a substantial fraction of the particles
in a coherent macroscopic setting generally requires going
beyond MF, for example, at low density in one dimension
(1D) [1,2] or high density in three dimensions (3D). In 3D
systems, the high-density Lee-Huang-Yang corrections,
which are induced by quantum correlations, were realized
experimentally using the Feshbach resonance [3] and in the
spectacular form of “quantum droplets” in dipolar [4–6]
and isotropic [7] bosonic gases, i.e., as self-trapped states
stabilized against the collapse by the beyond-MF self-
repulsion. This stabilization was predicted in Refs. [8–10].
Quantum effects involving a macroscopic number of atoms
in collapsing attractive 3D gases and colliding condensates
were also observed [11–15] and analyzed [16,17] in the MF
density range.
A generic opportunity to observe beyond-MF effects

arises when a particular symmetry of the MF dynamics,
which prohibits a certain effect, is broken at the micro-
scopic level, thus making observation of the effect possible.
For instance, the scale invariance in the dynamics
of a harmonically trapped 2D Bose gas nullifies the
interaction-induced shift of the frequency of monopole
excitations for all excitation amplitudes; however, this scale
invariance is broken by the quantum many-body
Hamiltonian, leading to a small shift, albeit discernible
on a zero background [18]. In this context, the symmetry
breaking by the secondary quantization may be considered
as a manifestation of a general phenomenon known as
the quantum anomaly [19]. In this Letter we develop a
similar strategy for predicting beyond-MF effects in the

one-dimensional (1D) self-attractive Bose gas in a MF
range of parameters. The respective MF equation amounts
to the nonlinear Schrödinger (NLS) equation, integrable by
the inverse-scattering transform [20]. The NLS rigidly links
the structure of a time-dependent solution to its initial form,
with many features of the latter rendered identifiable in the
former. In particular, a sudden increase of the strength of
the attractive coupling constant by a factor of 4, i.e., an
interaction quench, converts a fundamental soliton into an
exact superposition of two solitons with zero relative
velocity, zero spatial separation, and with a mass ratio
3∶1 [21–23]. The two superimposed solitons have different
chemical potentials, hence, the density oscillates as a result
of interference. Such an exact superposition of fundamental
solitons is identified as an NLS breather.
Further, quantum fluctuations in solitons have also been

analyzed in terms of the exact Bethe-ansatz (BA) solution
[24–27], the linearization approximation [28], and the
numerical positive-P representation [29,30]. These effects
have been observed in experiments [31–34], see also review
[35]. In particular, in the quantum many-body theory,
contrary to its MF counterpart, the center-of-mass position
of a soliton is a quantum coordinate whose conjugate
momentum is subject to quantum fluctuations [36–38].
The MF breather generated by the quench does not split

due to the absence of any relative velocity in the MF. We
predict, however, that the spread of the relative velocity of
the two solitons leads to dissociation, and thus reveals a
many-body quantum effect. A different dissociation sce-
nario was predicted in [39].
In Ref. [40] it is shown, using a Bose-Hubbard model,

that higher-order solitons also break up due to many-body
quantum effects. The fact that a nonintegrable lattice
model, with thermalization of eigenstates also predicts
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many-body quantum effects is relevant for comparison with
results of the present work.
We consider N atoms of mass m moving in a waveguide

with a transverse trapping frequency ω⊥. In the “deep 1D”
approximation they can be considered as particles moving
in the x direction, with zero-range interactions of strength
g ¼ 2ℏaω⊥ [41], where the s-wave scattering length a can
be tuned by an external magnetic field via the Feshbach
resonance. The corresponding Lieb-Liniger Hamiltonian
is [42]

Ĥ ¼ −
ℏ2

2m

XN
j¼1

∂2

∂x2j þ g
X
j<j0

δðxj − xj0 Þ: ð1Þ

This problem has an exact BA solution [24,43]. Because of
the translational invariance of the Hamiltonian (1), its
eigenfunctions are delocalized, having a homogeneous
density. For attractive interactions with g < 0, there are also
eigenstates in the form of one or several several strings—
bound states of several particles, i.e., quantum solitons
[24,25,44]. Although they remained a theoretical concept
since theywere introduced, very recently similar states—the
Bethe strings—have been directly observed in an antiferro-
magnetic Heisenberg-Ising chain [45]. A superposition of
strings with different velocities may remain localized for a
finite time, so that it carries over into a MF multisoliton
(breather) in the limit of N → ∞ [26–28]. Normalization
factors for multistring states were derived in Ref. [46].
We assume that, at t < 0, the interaction strength was

g0 ¼ g=4, and the system contained a single-string state

φð0Þ
N with zero center-of-mass velocity. At t ¼ 0, the

external magnetic field suddenly changes, switching the
interaction strength to g, i.e., applying a fourfold quench to
the system. The exact BA calculation, starting from the
quenched state, makes it possible to directly compare the
result in the quantum many-body system with its exactly
known MF counterpart—the second-order breather, which
is generated by the fourfold quench [22]. This is, essen-
tially, the objective of the present work.
After the application of the quench, the many-body

configuration will be a superposition of a single-string state
φN , double-string states φN1;N−N1;v, where v is the relative
velocity of two strings composed of N1 and N − N1 atoms,
and multistring states. On the other hand, a fundamental
quantum soliton is a superposition of the single-string states
with different center-of-mass velocities. These states are
mutually orthogonal due to the center-of-mass velocity
conservation, therefore probabilities of quench-triggered
transitions from the prequench fundamental-soliton state to
multisoliton ones will be the same as for the delocalized
string states. The probabilities are calculated analytically
using the exact BA solution [47]. It is the basic technical
result of the present work which underlies the physical
considerations. First, the probability to remain in the single-
string state is

jhφð0Þ
N jφNij2 ¼

�
2

ffiffiffiffiffiffiffiffiffiffijgg0j
p

jgj þ jg0j
�2ðN−1Þ

¼
�
4

5

�
2ðN−1Þ

:

For the double-string states, the probabilities depend on the
relative string velocity v > 0 and the string composition,

dPN1;N−N1
ðvÞ

dv
¼ ð2 − δN1;N−N1

Þjhφð0Þ
N jφN1;N−N1;vij

2: ð2Þ

It is a sum of the probabilities corresponding to velocities v
and −v for N1 ≠ N − N1, while for N1 ¼ N=2 the states
with v and −v are identical. Examples of the probabilities
are displayed in Fig. 1 for N ¼ 4 and N ¼ 20. The natural
velocity scale is

v0 ¼ jgj=ð2ℏÞ≡ aω⊥: ð3Þ

Total probabilities of the transition to double-string states
with fixed N1,

PN1
≡

Z
∞

0

dPN1;N−N1
ðvÞ

dv
dv; ð4Þ

are presented in Fig. 2, making it obvious that the transition
N → 3N=4þ N=4 features the largest probability, in
agreement with the MF prediction. The cumulative
probability of the transition to all double-string states,P½N=2�

N1¼1 PN1
, exceeds 80% for N ≥ 8 (here, ½…� stand for

the integer part).
Another similarity to the MF is seen in the fact that the

quench-produced configuration, being a superposition of
multi-string eigenstates with different energies, oscillates in

FIG. 1. Channel-selective probability distributions for the
relative velocity [see Eq. (2)] of the dissociation products,
produced by the application of the quench to the single string
(fundamental quantum soliton). The black solid and red dot-
dashed lines show dP15;5=dv and dP3;1=dv, for N ¼ 20 and 4,
respectively and the same ratio, N1=ðN − N1Þ ¼ 3∶1, as the MF
breather. Plots for other ratios have similar shapes except for ones
with N1 ¼ N=2, which are shown by the blue long and magenta
short dashes (106dP10;10=dv and 10dP2;2=dv, respectively). The
velocity scale v0 is defined by Eq. (3).

PRL 119, 220401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

1 DECEMBER 2017

220401-2



time due to their interference, thus, qualitatively resembling
the breather. The binding energy of the multistring solution
is the sum of the constituting string energies, each one
being EN1

¼ −N1ðN2
1 − 1Þmg2=ð24ℏ2Þ [24,25]. In particu-

lar, the binding-energy difference between the ðN1;N−N1Þ
and ðN1−1;N−N1þ1Þ double-string states leads to beat-
ings at frequency ½EN1−1þEN−N1þ1−ðEN1

þEN−N1
Þ�=ℏ¼

N½N1−ðNþ1Þ=2�mg2=ð4ℏ3Þ, which tends to the MF
breather frequency, mg2N2=ð16ℏ3Þ, at N1 ¼ 3N=4 → ∞.
Probability distributions for the relative velocity of the

dissociation products, summed up over all double-string
dissociation channels,

PðvÞ ¼
X½N=2�

N1¼1

dPN1;N−N1
ðvÞ

dv
; ð5Þ

is almost independent of N; see its plot as a function of
v=

ffiffiffiffi
N

p
in Fig. 3.

The numerically calculated half width at half maximum
(HWHM), Δv, of the velocity distribution defined by
PðΔvÞ ¼ Pð0Þ=2 can be fitted to the following formula,
which is, naturally, close to the

ffiffiffiffi
N

p
dependence:

Δv ≈ 0.39N0.54v0; ð6Þ
see Fig. 4. The relative velocity can be measured also by its
mean-square value,

hv2i ¼
Z

∞

0

v2PðvÞdv=
Z

∞

0

PðvÞdv:

However, the numerically found root-mean-square (r.m.s.)
velocity increases with N only as

ffiffiffiffiffiffiffiffiffi
hv2i

q
≈ 0.63N0.36v0; ð7Þ

according to the fit displayed in Fig. 4. The probability
distribution (2) has slowly decaying tails for small N, in
particular, dP3N=4;N=4ðvÞ=dv ∼ v−3N at v → ∞. The tails
increase the r.m.s. velocity at smallN and, therefore, slower
its gain with N. On the contrary, due to the normalization
condition, the tails exhaust thewidth of the central part of the
v distribution at small N, boosting the HWHM growth with
N. Then at large N, when the tail effects fade out, the r.m.s.
velocity and HWHM should gain faster and slower, respec-
tively, than at small N. These arguments suggest that both
measures of the relative velocity variation assume the same
asymptotic scaling at largeN, which should be close to

ffiffiffiffi
N

p
,

according to Fig. 3. The eventual fit is displayed in Fig. 4:

FIG. 2. Total probabilities for different dissociation channels
(4), produced by the application of the g=4 → g quench to the
single string (fundamental quantum soliton) composed of N ¼ 8,
12, 16, 20, and 23 atoms (black solid, blue long-dashed, green
short-dashed, red dot-dashed, and cyan dot-dot-dashed lines,
respectively).

FIG. 3. Probability distributions [see Eq. (5)], totaled over all
double-string dissociation channels, for the relative velocity of
the emerging strings, as produced by the application of the
quench to the single string (fundamental quantum soliton)
composed of N ¼ 4, 8, 12, 16, 20, and 23 particles (magenta
dotted, black solid, blue long-dashed, green short-dashed, red
dot-dashed, and cyan dot-dot-dashed lines, respectively, the last
three lines being almost indistinguishable). Velocity scale v0 is
taken as per Eq. (3).

FIG. 4. HWHM (pluses) and r.m.s. (crosses) values of the
relative velocity averaged over all double-string (two-soliton)
dissociation channels, as a function of the number of atoms, N.
Fits provided by Eqs. (6), (7), and (8) are shown by the black
solid, red dot-dashed, and blue dashed lines, respectively. The
velocity unit is v0 [see Eq. (3)].
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Δv ≈ 0.44
ffiffiffiffi
N

p
v0: ð8Þ

The following estimate confirms the
ffiffiffiffi
N

p
scaling for a

typical relative velocity of the solitons, δv. Consider the
system placed in an external harmonic-oscillator (HO)
potential with frequency Ω. Varying Ω from vanishingly
small values towards very large ones, at each Ω one can
apply the g=4 → g quench to the respective ground state.
The figure of merit to monitor is δ~x—the time-averaged
distance, further symmetrized over permutations, between
centers-of-masses of two groups of atoms, each containing
the number of atoms ∼N. At small Ω, the state obtained
right after the quench is unaffected by the external confine-
ment, hence the two solitons (strings) start their motion
with the free-space relative velocity δv. Thus, the distance
δ~x will be dominated by the typical distance between the
solitons placed in the HO potential, δv=Ω, which diverges
at smallΩ. This very long scale governs the estimate for δ~x,
the other potentially relevant length scale, the average
distance between two atoms inside the same soliton, which
is on the order of the size of an individual soliton,
∼ℏ2=ðmjgjNÞ, does not diverge at Ω → 0. Thus,

δ~xΩ→0 ∼ δv=Ω:

On the other hand, at large Ω, the effect of the interatomic
interactions vanishes and the estimate for δ~x is determined
by zero-point quantum fluctuations of the center-of-mass
position of the cloud containing ∼N particles:

δ~xΩ→∞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðNmΩÞ

p
:

A crossover between the two regimes occurs when the
interaction energy per particle (comparable to the chemical
potential of the gas, μ), estimated as ∼μ ∼mg2N2=ℏ2,
becomes comparable to the HO quantum, ℏΩ. Indeed,
when the former is dominated over by the latter, the
interactions are irrelevant, and the system becomes an
HO-confined ideal gas. At the crossover, the two above-
mentioned estimates yield the same value. An estimate for
δv immediately follows:

δ~xΩ→0jμ∼ℏΩ∼ δ~xΩ→∞jμ∼ℏΩ ⇒ δv∼
ffiffiffiffiffiffiffiffi
ℏΩ
Nm

r ����
Ω∼mg2N2

ℏ3

∼
jgj
ℏ

ffiffiffiffi
N

p
:

Indeed, this estimate is consistent with the fit (8).
The above results suggest that experimental observation

of the variance in the relative velocity of the solitons due to
quantum many-body effects may be possible. To demon-
strate this, we consider 3 × 103 7Li atoms, in a waveguide
with transverse trapping frequency ω⊥ ¼ 2π × 254 Hz.
The initial state is a fundamental matter-wave soliton,
existing at scattering length at<0 ¼ −1.0aBohr, which is
quenched up to at>0 ¼ −4aBohr [50]. The resulting state
constitutes an NLS breather with an aphelion density

profile proportional to sech2ðx=lbreatherÞ and width
lbreather ¼ 8ℏ2=ðmgNÞ ¼ 36 μm [21,22]. Assuming that
the splitting of the breather into two solitons becomes
apparent when the distance between their centers-of-
masses, after evolution time τ, Δx ¼ Δv · τ, becomes
comparable to the breather’s width lbreather, and using
extrapolation (6) for the relative velocity of the solitons,
we obtain τ≃ 3 s for the time necessary to certainly
observe the splitting of the breather caused by the quantum
dynamics.
The predicted dissociation time can be made even shorter

at the expense of reducing the cloud population, assuming
that the scattering length simultaneously increases so as to
keep product Na at a finite fraction of the collapse critical
value, Na≲ a⊥, a⊥ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmω⊥Þ

p
being the size of the

transverse vibrational ground state of the waveguide used.
The microscopic velocity scale v0, the separation velocity
Δv, and the breather size lbreather can be estimated as
v0 ≲ ℏ=ðma⊥NÞ, Δv ≲ ℏ=ðma⊥

ffiffiffiffi
N

p Þ, and lbreather ≳ a⊥,
respectively. Then the breather dissociation time diminishes
as τ ∼ lbreather=Δv ≳ ð1=ω⊥Þ

ffiffiffiffi
N

p
with the decrease of the

number of particles.
For the analysis of possibilities for the experimental

implementation of the predictions reported here, it is
important to estimate deviations of real-world settings from
the idealizedmodel [51–53]. In this connection, it is essential
to consider the departure from the one-dimensionality,
as suggested, in particular, by the work aimed at exper-
imental observation of the quantum violation of the
scale-invariance-induced constancy of the monopole-mode
frequency in the 2DBose gas. In that case, weak dependence
of the quantum state on the third, confined dimension tends
to mask the quantum many-body effects [54]. Nevertheless,
experiments have clearly demonstrated that 3D experimental
setups with appropriately designed transverse confinement
can be efficiently used for the emulation of ideal one-
dimensional quantum settings, and such emulations are
stable against real-world disturbances. Relevant examples
are the creation of the atomic Newton’s cradlewith repulsive
interactions [55], and the realization of the super-Tonks-
Girardeau gas [56]. The latter example is especially relevant
for the comparison with the present analysis, as it is also
based on attractive interactions. Predictions of the MF
counterpart of the Lieb-Liniger model, i.e., the Gross-
Pitaevskii equation, which are also based on the one-
dimensionality and integrability, are very well confirmed
in numerous experiments with matter-wave solitons
[57–61]. The well-known stability of the exact solution of
the Lieb-Linigermodel [24,43] clearlymeans that the results
may only be slightly perturbed by other distortions, such as
external fluctuations and inhomogeneities.
As concerns the full 3D analysis, an example which

makes it possible to explicitly compare the MF approxi-
mation and its many-body counterpart is offered by the
problem of the stabilization of the gas of bosons with
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repulsive interactions, attracted to the center with potential
∼ − r−2. In that case, the MF predicts suppression of the
quantum collapse and creation of a ground state which is
missing in the single-particle formulation [62], while the
full many-body analysis demonstrates that the same newly
created state exists as a metastable one [63].
To summarize, we have showed that the dissociation of

the 1D matter-wave breather, initiated by the quench from
the fundamental soliton, is a purely quantum many-body
effect, as all the MF contributions to the dissociation vanish
due to the integrability at the MF level. This conclusion
opens the way to observe truly quantum many-body effects
without leaving the MF range of experimental parameters.
We have evaluated the dissociation time corresponding to
typical experimental parameters for atomic solitons. The
extrapolation of the present results to a larger number of
atoms is justified [47] by the comparison with recent results
produced by truncated Wigner calculations in Ref. [64].
Both [64] and our work predict a single gradually-
expanding cloud, unlike the abrupt formation of two flying
apart fragments, predicted in the previous work [39].
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