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The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical
antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses
and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and
Poynting’s theorem to derive a set of optical-frequency antenna design rules for benchmarking and
optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings
a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance
compared to a reference two-wire antenna. Our work will be useful for the design of high-performance
optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-
enhanced single-emitter spectroscopy and sensing.
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Introduction.—Focusing optical antennas (FOAs) make
use of plasmonic resonances to convert propagating
electromagnetic waves at visible frequencies to near fields
localized in nanoscale volumes much smaller than the
diffraction limit [1,2]. In such a hot spot the local density of
states (LDOS) for pointlike quantum emitters (QEs) may be
increased by a factor of 103 and possibly beyond [2–4],
which can be applied in novel light-based technologies,
e.g., quantum optics [5] and communication [6], sensing
[7], as well as scanning near-field microscopy [8]. The
design of FOAs, which typically consist of single or
multiple particles of basic shapes [3,6,9–11], is largely
inspired by rules derived from the radio frequency (rf)
regime. The resulting antenna structures, however, can
hardly be optimal for QE-FOA coupling, since there is no
comparable task in rf technology. In addition, the radiation
behavior of optical antennas differs from their rf counter-
parts due to Ohmic losses and fields penetrating the antenna
material [12]. Yet, it has been shown that the Purcell factor
[13,14] and likewise the antenna impedance [15] provide a
measure for emitter-antenna coupling based on the anten-
na’s Green’s function [16].
Here, we combine Poynting’s theorem [17]with reciprocity

[18] to quantify QE-FOA coupling by means of a 3D overlap
integral of theQE’s electric field and the antennamode current
pattern (cf. mode matching [19,20]). Introducing a further
mode-matching condition for FOA to far-field coupling allows
us to identify two independent FOA mode current patterns,
which both maximize antenna radiation. This enables us to
understand the high performance of FOAs obtained from
evolutionary optimization [21] as well as of other unusual

FOA geometries, like the indented nanocone [22] or the
double hole resonator [23]. Finally, based on our new design
rules, an improved plasmonic cavity antenna geometry is
devised and numerically investigated. The flexibility of the
presented framework opens diverse applications ranging from
improved emitter-cavity coupling in quantum optics to
enhanced single-emitter sensing schemes. It also provides
new insights for the understanding and optimization of
complex-shaped metal nano-objects as they appear in sur-
face-enhanced Raman scattering (SERS) substrates [24].
Theory.—We consider a point dipole with dipole

moment p situated at rp, emitting photons at wave number
k with unity quantum efficiency. The emitted power P of
the dipole in an arbitrary environment depends on the
self-interaction due to scattered fields Esc. The enhance-
ment of the QE emission rate γ=γ0 as well as of the dipole
emission power P=P0 in an inhomogeneous environment
can be calculated based on Poynting’s theorem in Systeme
International units [17]:

γ

γ0
¼ P

P0

¼ 1þ 6πε0
jpj2

1

k3
ImfEscðrpÞ · p�g: ð1Þ

Here, γ0 and P0 are the vacuum values of the QE emission
rate and dipole emission power, respectively. The emission
power enhancement depends on the backscattered field
components at the dipole position parallel to the
dipole moment. Equation (1) also takes into account the
phase between the dipolar moment and scattered field
Δϕ ¼ ϕsc − ϕp [25],
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ImfEscðrpÞ · p�g ¼ jEscðrpÞj · jpj · ImfeiΔϕg: ð2Þ

We define the scattering environment to be a general
FOA with its center of mass in the coordinate origin as
sketched in Fig. 1. It exhibits a set of plasmonic eigenm-
odes at the emission wavelength of the QE, which is
positioned at rp near the FOA with k · rp ≪ 1. Its current
density then can be written as jp ¼ −iωpδðr − rpÞ. In the
following we assume without loss of generality only a
single relevant FOAmode ν to be the source of the scattered
field Esc in Eqs. (1) and (2), which can be expressed as

EscðrpÞ ¼ iωμ0

Z
Vν

Ḡ0ðrp; r0Þjνðr0Þd3r0; ð3Þ

where Ḡ0ðrp; r0Þ is the Green’s tensor and jν is the antenna
mode current density, being the source of the scattered
field. The mode current density is derived from the
quasinormal eigenmode electric field distribution Eν of
the optical antenna, which incorporates also the far-field
radiation [13,26–28] (see Sec. S1 of the Supplemental
Material [29] for details about the determination of Eν).
The currents inside the antenna are then obtained via
jν ¼ σ ·Eν, where σ is the frequency and material depen-
dent conductivity.
We now restrict the setup to the quasistatic limit. Then,

for a FOA consisting of a local, dispersive, and lossy
material, which is described by the dielectric function εðωÞ,
the reciprocity theorem implies the symmetry Ḡðrp; r0Þ ¼
Ḡðr0; rpÞ of the Green’s tensor [18,30]. Inserted into Eq. (3)
the scattered fields now depend on the Green’s function of
the emitting dipole at rp evaluated inside the volume of
the FOA:

EscðrpÞ ¼ iωμ0

Z
Vν

Ḡ0ðr0; rpÞjνðr0Þd3r0: ð4Þ

In the quasistatic limit k · d ≪ 1 with d ¼ ðdx; dy; dzÞ
being the spacial extension vector of the optical antenna,
containing the maximal extents in all three dimensions, and
k being the incoming wave vector. This ensures that all
current elements contribute with the same phase to the
scattered field at the dipole position (see Sec. S3 [52] for a
generalization beyond the quasistatic approximation). As
we are working at the antenna resonance, we have Δϕ ¼
π=2 and thus ImfeiΔϕg ¼ 1, which allows us to simplify
Eq. (2) to ImfEscðrpÞ · p�g ¼ jEscðrpÞj · jpj. Introducing
this together with Eq. (4) into Eq. (1) then yields

γ

γ0
¼ P

P0

¼ 1þ 6πε0
jpj2

1

k3

× ωμ0

Z
Vν

jḠ0ðr0; rpÞpjνðr0Þjd3r0ðrpÞ: ð5Þ

Using EpðrÞ ¼ ω2μ0Ḡðr; rpÞp we obtain the important
result

P
P0

¼ 1þ 6πcε0
k4

Z
Vν

jEpðr0Þ · jνðr0Þjd3r0 ð6Þ

with c the speed of light in vacuum. This equation describes
the fact that the total power extracted from a point dipole into
the νth antennamode (i.e., the Purcell factor) is described by
the overlap integral of the mode’s current density pattern
with the point dipole fields inside the volume of the FOA,
thereby defining amode-matching condition. Equation (6) is
a variation of the volume integral equation formalism for
electromagnetic scattering [31] and it has been derived in
this context before [32,33]. However, until now Eq. (6) has
not been interpreted in the context of optical antennas to
derive design rules as presented in the following section.
To test the validity of Eq. (6), the analytical case

of a dipole in front of a sphere has been evaluated (see
Sec. S2 of the Supplemental Material [29], including
Refs. [34–39]) and a numerical test on split-ring antennas
has been performed (see Sec. S3 of the SupplementalMaterial
[29], including Ref. [40]). A phase-dependent formulation of
Eq. (6) that is valid beyond the quasistatic approximation and,
thus, can be extended also for multiple resonances is derived
and discussed in Sec. S4 of the Supplemental Material [29].
We also point out that for radio-frequency antennas the
integration in Eq. (6) can be restricted to the surface of a
perfect-metal antenna.
Discussion.—Equation (6) is reminiscent of the mode

matching formalisms used to determine the coupling effi-
ciencies between waveguide modes [19,20]. Here, however,
the three-dimensional volume of the FOA has to be
considered. From Eq. (6) three intuitive rules can be
deduced. (i) Align the dipole field and the antenna’s mode
current pattern everywhere inside the antenna volume.
(ii) Maximize the mode current jν ¼ σ ·Eν at each point
inside the plasmonic antenna. The field amplitude jEνj of the

jν

Ep

rp,z p

0

Esc

OA

z

x/y

jp

0

rp,x/y

FIG. 1. General setup of a dipole p situated at rp with an
oscillating current jp being the source of electromagnetic fields
Ep. In its environment a metallic nanoparticle is situated with a
single excitable mode ν leading to scattered fields Ep=ν origi-
nating from source current densities jp=ν.
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quasinormal eigenmode ν inside the antenna material is
frequency dependent, showing aLorentz peak at the position
of the antenna resonance. Both the antenna geometry and the
material’s complex dielectric function define the position of
the resonance peak and can be used to maximize Eν at the
emission frequency of the dipole. The conductivity σ is a
frequency-dependent material property and, therefore, the
antenna material should be chosen to show a large σ at the
emission frequency of the dipole (compare Sec. III. 2 in
Ref. [33]). (iii) Maximize the volume of the overlap integral.
This suggests the use of as much metal as possible in the
vicinity of the dipole. Rules (i) and (iii) suggest that
the established two-particle geometries may not result in
the best possible FOAs. Instead, a FOA should enclose the
QE as much as possible, resembling a kind of plasmonic
cavity antenna. Antennas that to some extend fulfill these
design rules in two dimensions have already been realized
and are known as double-hole resonators [23].
So farwe have only considered the transfer of energy from

the dipole to the antenna mode. However, a FOA has two
tasks, which have to been fulfilled simultaneously by the
antenna mode: in addition to providing a maximal LDOS at
the emitters’ position it also has to couple efficiently to
propagating far fields [41]. Therefore,we introduce a second
dipole in the far field oriented parallel to the first dipole
representing a pointlike detector or—since reciprocity
applies—a pointlike emitter. Themode-matching formalism
according to Eq. (6) can then also be used to describe the
coupling to this second dipole in the far field. As the antenna
can be described quasistatically the electric fields of the
second dipole in the FOA volume can be approximated as
plane waves corresponding to a homogeneous field Ef

parallel to the far-field dipole moment. To optimize far-field
coupling the mode currents of the optical antenna should
therefore be parallel to Ef in accordance with rule (i).
In order to find a mode current distribution that optimizes

coupling to both the near-field and the far-field dipole, Ef

can be superposed linearly on the near fieldsEn originating
from the dipole close to the antenna. For a QE oriented
along the x axis the optimal mode current pattern to fulfill
both mode-matching criteria is therefore a linear combi-
nation of the quasistatic dipolar contribution

En ¼
1

4πε0

3nðnpÞ − p
r3

ð7Þ

with the homogeneous field Ef ¼ ax̂:

Eν ¼ En þ Ef: ð8Þ

The scalar factor a can be positive or negative, leading to
two fundamentally different optimal focusing antennamode
current patterns as illustrated in Fig. 2(a), which we denote
as the “n-type” (left) and “p-type” (right) mode. Close to the
antenna hot spot in which the QE is positioned the dipolar

near field En dominates. Away from the QE, En falls off as
1=r3 and the homogeneous field starts to dominate. For the
n-type mode (p-type mode) isolated points on the x axis
(a continuous circle in the yz plane) with zero field strength
appear (marked with white dashed circles).
Figure 2(b) shows a mode current pattern of a FOA that

resulted from an evolutionary algorithm [21,42–45]with the
optimization goal to maximize the near field in the center of
the structure using a planar 30 nm thick patterned gold
layer at λ ¼ 830 nm illuminated by a horizontally polarized
focusedGaussian beam. The current pattern is identified as a
p-type mode (areas with vanishing fields marked with a
white dashed line): the antenna center is surrounded by gold,
realizing the 2D equivalent of a plasmonic cavity antenna.
The currents switch direction on the y axis to match the
needs for optimal far-field coupling. Since the antenna is
sufficiently small and centered in a Gaussian focus, a plane
wave excitation can be assumed. While a p-type mode
current pattern can be obtained in this 2D arrangement it
cannot be realizedwith benefits in 3D as discussed in Sec. S5
of the SupplementalMaterial [29] (includingRefs. [46–48]).
Figure 2(c) introduces a 3D plasmonic cavity antenna

supporting the n-type mode current pattern, which to our
knowledge has not yet been realized in an optical antenna
[49]. We choose a geometry with rotational symmetry based
on a reference antenna [two-wire dipole antenna, 10 nm gap,
15 nm wire diameter, spherical end caps, overall length
l ¼ 110 nm, made from gold, see the small black inset in
Fig. 2(d)]. The reference antenna has a resonance at λ ¼
650 nm [black graph, Fig. 2(d)]. To realize the plasmonic
cavity antenna, interconnects were attached between the
antenna arms to allow additional current paths, enclosing
the QEwith gold. The length of the plasmonic cavity antenna
was tuned to also be resonant at λ ¼ 650 nm resulting in a
slightly reduced length of l ¼ 104 nm, 5.5% shorter than the
reference antenna. The plasmonic cavity antenna is a single
particle with a mode current pattern flowing unidirectionally
from end to end resembling a λ=2 resonance [see the inset of
Fig. 2(c)]. The mode current pattern also exhibits areas of
vanishing fields along the x axis, as expected for an n-type
mode [left panel of Fig. 2(a)]. In contrast, the reference
antenna exhibits a λ resonance [see Fig. A1(b) of the
Supplemental Material [29]] similar to voltage-fed radio-
frequency antennas (Table 3.1, p. 45 in Ref. [51]).
Figure 2(d) shows the near-field intensity enhancement

spectra at the antenna center for both the plasmonic cavity
antenna and reference antenna when illuminated by a
Gaussian focus with a numerical aperture NA ¼ 1. Since
both antennas exhibit a dipolar emission pattern, Gaussian
excitation can also be used—in the same way as plane wave
excitation—to investigate relative changes in the antenna’s
far-field coupling. Both antenna resonances peak at
λ ¼ 650 nm with a near-field intensity enhancement of
2.79 × 103 (2.08 × 103) for the plasmonic cavity antenna
(reference antenna) and a Q factor ¼ λ=Δλ of 22.0 (27.1).
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The plasmonic cavity antenna spectrum shows a second
shallow peak at 570 nm, due to a mode similar to that of the
reference antenna with a current density in the x direction
that does not change its direction. An analysis of the
antenna cross sections under plane wave illumination was
performed to characterize the far-field coupling and iden-
tify the additional loss channels of the plasmonic cavity
antenna that lead to the 19% decreased Q factor. The
plasmonic cavity antenna exhibits an absorption cross
section of 4.17 × 104 nm2 and a scattering cross section
of 1.77 × 104 nm2, yielding a scattering efficiency of
η ¼ 0.298. The reference antenna exhibits an absorption
cross section of 2.34 × 104 nm2 and a scattering cross
section of 0.362 × 104 nm2 and, thus, a 55% lower
scattering efficiency of η ¼ 0.134. Thus, the lowered Q
factor for the plasmonic cavity antenna is due to increased
radiation losses. According to Ref. [52], particles small
compared to the impinging wavelength couple best to
the far field, when the scattering and absorption cross
sections are equal. Also, the plasmonic cavity antenna

mode currents from end to end resemble those that of a λ=2
antenna, which in rf technology is known to radiate most
efficiently [51].
Although realizing an n-type mode current pattern, the

plasmonic cavity antenna design in Fig. 2(c) likely does not
represent the ultimate limit that can be achieved in terms of
near-field intensity enhancement since it has been designed
to be as similar as possible to the reference antenna. To find
better designs and the optimal magnitude of a in Eq. (8)
will be a topic of future research.
Finally we want to mention that in this work we omit the

refraction of fields at the antenna surface. This is a good
approximation if the antenna material strongly deviates
from an ideal metal (for a discussion see Sec. S6 of the
Supplemental Material [29]).
Conclusion.—Reciprocity and Poynting’s theorem can be

combined to obtain a three-dimensional mode-matching
framework for describing the optimal coupling between a
quantum emitter and a plasmonic optical antenna. Based on
this framework we identified two fundamental mode current

(a)

(c) (d)

(b)

FIG. 2. Plasmonic antenna modes with double mode matching. (a) xy cross section of the linear combination of a quasistatic dipolar
field and a constant field pointing in the x direction as described by Eq. (8) for a < 0 (left) and a > 0 (right). The white dashed circles
mark the points of vanishing fields for better orientation in panel (b), showing the near field intensity enhancement (color scale) and the
current direction (white arrows) of a planar antenna geometry optimized by an evolutionary algorithm for maximum fields in the center
(marked by a small circle, scale bar: 100 nm) [21]. (c) Antenna design carrying a resonant mode resembling panel (a), left. The originally
rotational symmetric geometry is shown with a 90° cutaway for improved visualization. Additionally, the near-field intensity (color) as
well as the current direction (green arrows) are overlaid for a quarter cross section. The small orange dot marks the center, where a QE is
to be placed. (d) Near-field intensity enhancement spectra at the orange point in panel (c) (blue) as well as at the center of a two-wire
dipole reference antenna, with an identical end cap radius (black). The small insets show the xy plane cross section of both geometries.
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patterns for the optimal focusing of optical antennas. Making
use of these new design rules for optical antennas the concept
of the plasmonic cavity antenna has been developed, which
outperforms a two-wire reference antenna.
The developed framework will help to unravel the full

potential of focusing optical antennas and will help to
optimize, e.g., tip enhanced Raman spectroscopy (TERS)
tips and SERS substrates, making use of novel complex and
surprising geometries [22,23]. Both the near-field and far-
field coupling tasks of an optical antenna can be optimized
rather independently yielding a large flexibility to optimize
antenna performance for a variety of different tasks.
Far-field detectors with a finite area can be implemented
by a superposition of multiple dipoles. An extension to
multiparticle multimode systems with retardation, where
several double mode-matching conditions define the over-
all far field to near field conversion efficiency will help to
better understand complex and large scale SERS-active
substrates [24]. On the other hand, by deliberately avoiding
far-field coupling and concentrating on the quantum emitter
to antenna coupling only [4], nanocavities for strong light
matter coupling can be devised.
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