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Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going
beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a ð0þ 1ÞD quantum
cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly
solvable as N → ∞, exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry
and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random
intersite quadratic hopping. Combining the imaginary time path integral with real time path integral
formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including
thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal
conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz
ratio L≡ ðκρ=TÞ varies between two universal values as a function of temperature. Our work exemplifies
an analytically controlled study of a strongly correlated metal.
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Introduction.—Strongly correlated metals comprise an
enduring puzzle at the heart of condensed matter physics.
Commonly a highly renormalized heavy Fermi liquid occurs
below a small coherence energy scale, while at higher
temperatures a broad incoherent regime pertains in which
quasiparticle description fails [1–9]. Despite the ubiquity of
this phenomenology, strong correlations and quantum fluc-
tuations make it challenging to study. The exactly soluble
SYK models, which systematize and extend early ideas of
random interaction models [10–13], provide a powerful
framework to study such physics. The most-studied SYK4

model, a ð0þ 1ÞD quantum cluster of N Majorana fermion
modes with random all-to-all four-fermion interactions
[14–22] has been generalized to SYKq models with q-
fermion interactions. Subsequent works [23,24] extended the
SYK model to higher spatial dimensions by coupling a
lattice of SYK4 quantum clusters by additional four-fermion
“pair hopping” interactions. They obtained electrical and
thermal conductivities completely governed by diffusive
modes and nearly temperature-independent behavior owing
to the identical scaling of the interdot and intradot couplings.
Here, we take one step closer to realism by considering a

lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random intercluster
“SYK2” two-fermion hopping of strength t0 [25–30].
Unlike the previous higher dimensional SYKmodels where
local quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ≪ U0, which
implies strong interactions, and focus on the correlated
regime T ≪ U0. We show the system has a coherence

temperature scale Ec ≡ t20=U0 [25,31,32] between a heavy
Fermi liquid and an incoherent metal. For T < Ec, the SYK2

induces a Fermi liquid, which is, however, highly renor-
malized by the strong interactions. For T > Ec, the system
enters the incoherent metal regime and the resistivity ρ
depends linearly on temperature. These results are strikingly
similar to those of Parcollet and Georges [33], who studied a
variant SYK model obtained in a double limit of infinite
dimension and large N. Our model is simpler, and does not
require infinite dimensions. We also obtain further results on
the thermal conductivity κ, entropy density, and Lorentz ratio
[34,35] in this crossover. This work bridges traditional
Fermi-liquid theory and the hydrodynamical description
of an incoherent metallic system.
SYK model and imaginary-time formulation.—We con-

sider a d-dimensional array of quantum dots, each with N
species of fermions labeled by i; j; k;…,

H ¼
X
x

X
i<j;k<l

Uijkl;xc
†
ixc

†
jxckxclx þ

X
hxx0i

X
i;j

tij;xx0c
†
i;xcj;x0 ;

ð1Þ

where Uijkl;x ¼ U�
klij;x and tij;xx0 ¼ t�ji;x0x are random zero

mean complex variables drawn from Gaussian distribution

whose variances jUijkl;xj2 ¼ 2U2
0=N

3 and jtij;x;x0 j2 ¼ t20=N.
In the imaginary time formalism, one studies the partition

function Z¼Tre−βðH−μN Þ, with N ¼P
i;xc

†
i;xci;x, written as

a path integral over Grassman fields cixτ, c̄ixτ. Owing to
the self-averaging established for the SYK model at large N,
it is sufficient to study Z̄ ¼ R ½dc̄�½dc�e−Sc, with (repeated
species indices are summed over)
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Sc¼
X
x

Z
β

0

dτc̄ixτð∂τ−μÞcixτ−
Z

β

0

dτ1dτ2

�X
x

U2
0

4N3
c̄ixτ1 c̄jxτ1ckxτ1clxτ1 c̄lxτ2 c̄kxτ2cjxτ2cixτ2þ

X
hxx0i

t20
N
c̄ixτ1cjx0τ1 c̄jx0τ2cixτ2

�
: ð2Þ

The basic features can be determined by a simple power
counting. Considering for simplicity μ ¼ 0, starting from
t0 ¼ 0, the U2

0 term is invariant under τ → bτ and
c → b−1=4c, c̄ → b−1=4c̄, fixing the scaling dimension Δ ¼
1=4 of the fermion fields. Under this scaling c̄∂τc term is
irrelevant. Yet upon addition of two-fermion coupling,
under rescaling, t20 → bt20, so two-fermion coupling is a
relevant perturbation. By standard reasoning, this implies a
crossover from the SYK4-like model to another regime at
the energy scale where the hopping perturbation becomes
dominant, which is Ec ¼ t20=U0. Assuming no intermediate
fixed points, we expect the renormalization flow is to the
SYK2 regime, i.e., to a Fermi liquid. Indeed, keeping the
SYK2 term invariant fixes Δ ¼ 1=2, and U2

0 → b−1U2
0 is

irrelevant. Since the SYK2 Hamiltonian (i.e., U0 ¼ 0) is
quadratic, the disordered free fermion model supports
quasiparticles and defines a Fermi-liquid limit. For
t0 ≪ U0, Ec defines a crossover scale between SYK4-like
non-Fermi-liquid and the low temperature Fermi liquid.
The crossover behavior studied below will justify our
previous assumption of the absence of intermediate fixed
points between the SYK2 and SYK4 regimes.
At the level of thermodynamics, this crossover can be

rigorously established using imaginary time formalism.
Introducing a composite field Gxðτ;τ0Þ¼ð−1=NÞPicixτc̄ixτ0
and a Lagrange multiplier Σxðτ; τ0Þ enforcing the
previous identity, one obtains Z̄ ¼ R ½dG�½dΣ�e−NS, with
the action

S ¼ −
X
x

ln det ½ð∂τ − μÞδðτ1 − τ2Þ þ Σxðτ1; τ2Þ�

þ
Z

β

0

dτ1dτ2

�
−
X
x

�
U2

0

4
Gxðτ1; τ2Þ2Gxðτ2; τ1Þ2

þ Σxðτ1; τ2ÞGxðτ2; τ1Þ
�
þ t20

X
hxx0i

Gx0 ðτ1; τ2ÞGxðτ2; τ1Þ
�
:

ð3Þ
The large N limit is controlled by the saddle point

conditions δS=δG ¼ δS=δΣ ¼ 0, satisfied by Gxðτ; τ0Þ ¼
Gðτ − τ0Þ, Σxðτ; τ0Þ ¼ Σ4ðτ − τ0Þ þ zt20Gðτ − τ0Þ (z is the
coordination number of the lattice of SYK dots), which
obey

GðiωnÞ−1 ¼ iωn þ μ − Σ4ðiωnÞ − zt20GðiωnÞ;
Σ4ðτÞ ¼ −U2

0GðτÞ2Gð−τÞ; ð4Þ
where ωn ¼ ð2nþ 1Þπ=β is the Matsubara frequency. We
solve them numerically and reinsert into Eq. (3) to obtain
the free energy, hence the full thermodynamics [24,36,37].
Consider the entropy S. A key feature of the SYK4 solution
is an extensive (∝ N) entropy [17] in the T → 0 limit, an

extreme non-Fermi-liquid feature. This entropy must be
removed over the narrow temperature window set by the
coherence energy Ec. Consequently, we expect that S=N ¼
SðT=EcÞ for T, Ec ≪ U0, where the universal function
SðT ¼ 0Þ ¼ 0 indicating no zero temperature entropy in a
Fermi liquid, and SðT → ∞Þ ¼ 0.4648…, recovering the
zero temperature entropy of the SYK4 model. The universal
scaling collapse is confirmed by numerical solution, as
shown in Fig. 1. This implies also that the specific heat
NC ¼ ðT=EcÞS0ðT=EcÞ, and, hence, the low-temperature
Sommerfeld coefficient

γ ≡ lim
T→0

C
T
¼ S0ð0Þ

Ec
ð5Þ

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coefficient in the weak interaction
limit t0 ≫ U0, which is of order t−10 , there is an “effective
mass enhancement” of m�=m ∼ t0=Ec ∼ U0=t0. Thus, the
low temperature state is a heavy Fermi liquid.
To establish that the low temperature state is truly a

strongly renormalized Fermi liquid with large Fermi-
liquid parameters, we compute the compressibility,
NK ¼ ∂N =∂μjT . Because the compressibility has a
smooth low temperature limit in the SYK4 model, we
expect that K is only weakly perturbed by small t0. For
t0 ≪ U0, we indeed have K ≈ Kjt0¼0 ¼ c=U0 with the
constant c ≈ 1.04 regardless of T=Ec. For free fermions,
the compressibility and Sommerfeld coefficient are both
proportional to the single-particle density of states (DOS),
and in particular γ=K ¼ π2=3 for free fermions. Here we
find γ=K ¼ ½S0ð0Þ=c�U0=Ec ∼ ðU0=t0Þ2 ≫ 1. This can
only be reconciled with Fermi-liquid theory by introducing
a large Landau interaction parameter. In Fermi-liquid

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of ðT=EcÞ, given t0, T ≪ U0(z ¼ 2). C → S0ð0ÞT=Ec
as T=Ec → 0. Solid curves are guides to the eyes.
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theory, one introduces the interaction fab via δεa ¼P
bfabδnb, where a, b label quasiparticle states. For a

diffusive disordered Fermi liquid, we take fab ¼ F=gð0Þ,
where gð0Þ is the quasiparticle DOS, and F is the
dimensionless Fermi-liquid interaction parameter. The
standard result of Fermi-liquid theory [37] is that γ is
unaffected by F but K is renormalized, leading to
γ=K ¼ ðπ2=3Þð1þ FÞ. We see that F ∼ ðU0=t0Þ2 ≫ 1,
so that the Fermi liquid is extremely strongly interacting.
Comparing to the effective mass, one has F ∼ ðm�=mÞ2.
Real time formulation.—While imaginary time formu-

lation is adequate for thermodynamics, it encounters diffi-
culties in addressing transport due to the difficulty of analytic
continuation to zero real frequency in the presence of the
emergent low energy scale Ec. Instead, we reformulate
the problem in real time using the Keldysh path integral.
The Keldysh formalism calculates the partition function
Z ¼ ðTr½ρU�=Tr½ρ�Þ with ρ ¼ e−βðH−μNÞ and U the identity
evolution operator U ¼ e−iðH−μN Þðt0−tfÞe−iðH−μN Þðtf−t0Þ
describing evolving forward from t0 → tf (with Keldysh
label þ) and backward (Keldysh label −) identically.
Paralleling the imaginary-time development, we introduce
collective variables Gx;ss0 ðt; t0Þ ¼ ð−i=NÞPic

s
ixtc̄

s0
ixt0 and

Σx;ss0 with s, s0 ¼ � labeling the Keldysh contour, and
integrate out the fermionic fields to obtain Z̄ ¼R ½dG�½dΣ�eiNSK [37], with the Keldysh action,

iSK ¼
X
x

ln det½σzði∂t þ μÞδðt − t0Þ − Σxðt; t0Þ�

−
X
ss0

Z
tf

t0

dtdt0
�X

x

U2
0

4
ss0Gx;ss0 ðt; t0Þ2Gx;s0sðt0; tÞ2

−
X
x

Σx;ss0 ðt; t0ÞGx;s0sðt0; tÞ

þ
X
hx0xi

t20ss
0Gx;ss0 ðt; t0ÞGx0;s0sðt0; tÞ

�
; ð6Þ

where Σx in the determinant is to be understood as the
matrix ½Σx;ss0 � and σz acts in Keldysh space. We obtain the
numerical solution to the Green’s functions [37] by solving
for the saddle point of SK . We plot in Fig. 2 the spectral
weight AðωÞ≡ ð−1=πÞImGRðωÞ (GR is the retarded Green
function) at fixed U0=T ¼ 104 for Ec=T ¼ 0, 0.09, 1, 9,
which illustrates the crossover between the SYK4 and
Fermi-liquid regimes. For ω ≫ Ec, we observe the quantum
critical form of the SYK4 model, which displays ω=T
scaling, evident in the figure from the collapse onto a single
curve at large ω=T. At low frequency, the SYK4 model has
Aðω ≪ TÞ ∼ 1=

ffiffiffiffiffiffiffiffiffi
U0T

p
, whose divergence as T → 0 is cut-

off when T ≲ Ec. This is seen in the reduction of the peak
height in Fig. 2,

ffiffiffiffiffiffiffiffiffi
U0T

p
Aðω ¼ 0Þ, with increasing Ec=T. On

a larger frequency scale (inset), the narrow “coherence
peak,” associated with the small spectral weight of heavy
quasiparticles, is clearly visible.

We now turn to transport, and for simplicity focus on the
particle-hole symmetric case hereafter. The strategy is to
obtain electrical and heat conductivities from the fluctuations
of charge and energy, respectively, using the Einstein
relations. We first consider charge, and study the low-energy
Uð1Þ phase fluctuation φðx; tÞ, which is the conjugate
variable to particle number density N ðx; tÞ, around the
saddle point of the action SK . Allowing for phase fluctua-
tions around the saddle point solution amounts to taking

Gx;ss0 ðt; t0Þ → Gx;ss0 ðt − t0Þe−i½φsðx;tÞ−φs0 ðx;t0Þ�;

Σx;ss0 ðt; t0Þ → Σx;ss0 ðt − t0Þe−i½φsðx;tÞ−φs0 ðx;t0Þ�; ð7Þ
where Gx;ss0 ðt − t0Þ and Σx;ss0 ðt − t0Þ are the saddle point
solutions. Expanding (6) to quadratic order in φs,
SK ¼ SspK þ Sφ, yields the lowest order effective action for
the Uð1Þ fluctuations. This is most conveniently expressed
in terms of the “classical” and “quantum” components
of the phase fluctuations, defined as φc=q¼ðφþ�φ−Þ=
2 and in Fourier space:

iSφ ¼
X
p

Z
tf

t0

dtdt0½Λ1ðt − t0Þ∂tφc;pðtÞ∂tφq;−pðt0Þ

− υðpÞΛ2ðt − t0Þφc;pðtÞφq;−pðt0Þ� þ � � � : ð8Þ
Here the first termarises from the ln det½·� and the second from
the hopping (t20) term in Eq. (6). The function υðpÞ encodes
the band structure for the two-fermion hopping term, depen-
dent on lattice details, and the ellipses representOðφ2

qÞ terms
which do not contribute to the density correlations (and are
omitted hereafter—see the Supplemental Material [37] for
reasons). The coefficients Λ1ðtÞ and Λ2ðtÞ are expressed in
terms of saddle point Green’s functions in Ref. [37]. We
remark here that any further approximations, e.g., conformal
invariance, are not assumed to arrive at action (8), and hence
this derivation applies in all regimes.

FIG. 2. The spectral weight AðωÞ at fixed U0=T ¼ 104, μ ¼ 0,
z ¼ 2 for Ec=T ¼ 0, 0.09, 1, 9, corresponding a crossover from
SYK4 limit to the “heavy-Fermi-liquid” regime. Inset shows the
comparison of Green’s function for T=Ec ¼ 9 with the free
fermion limit result.
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In the low frequency limit, the Fourier transforms ofΛ1ðtÞ,
Λ2ðtÞ behave as Λ1ðωÞ ≈ −2iK and Λ2ðωÞ ≈ 2KDφω,
which defines the positive real parameters K and Dφ. At
small momentum, for an isotropic Bravais lattice, υðpÞ ¼ p2

(with unit lattice spacing), and the phase action becomes

iSφ ¼ −2K
X
p

Z þ∞

−∞
dωφc;ωðiω2 −Dφp2ωÞφq;−ω: ð9Þ

The density-density correlator is expressed as

DRnðx; t; x0; t0Þ≡ iθðt − t0Þh½N ðx; tÞ;N ðx0; t0Þ�i

¼ i
2
hN cðx; tÞN qðx0; t0Þi; ð10Þ

whereN s ≡ sNδSφ
δ _φs

,N c=q ¼ N þ �N − (keepingmomentum-
independent components—see Supplemental Material [37]).
Adding a contact term to ensure that limp→0DRnðp;ω ≠ 0Þ ¼
0 [38], the action (9) yields the diffusive form [39]

DRnðp;ωÞ ¼
−iNKω

iω −Dφp2
þ NK ¼ −NKDφp2

iω −Dφp2
: ð11Þ

From this we identify NK andDφ as the compressibility and
charge diffusion constant, respectively. The electric conduc-
tivity is given by Einstein relation σ ≡ 1=ρ ¼ NKDφ, or,
restoring all units,σ ¼ NKDφðe2=ℏÞa2−d (a is lattice spac-
ing). Note the proportionality to N: in the standard nonlinear
sigma model formulation, the dimensionless conductance is
large, suppressing localization effects. This occurs because
bothU and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.
The analysis of energy transport proceeds similarly.

Since energy is the generator of time translations, one
considers the time-reparametrization (TRP) modes induced
by ts → ts þ ϵsðtÞ and defines ϵc=q ¼ 1

2
ðϵþ � ϵ−Þ. The

effective action for TRP modes to the lowest-order in p,
ω reads [37]

iSϵ ¼
X
p

Z þ∞

−∞
dωϵc;ω½2iγω2T2 − p2Λ3ðωÞ�ϵq;−ω þ � � � ;

ð12Þ
where the ellipses has the same meaning as in Eq. (8).
At low frequency, the correlation function integral, given
in the Supplemental Material [37], behaves as Λ3ðωÞ ≈
2γDϵT2ω, which defines the energy diffusion constant Dϵ.
This identification is seen from the correlator for energy
density modes εc=q ≡ ðiNδSϵ=δ_ϵq=cÞ,

DRεðp;ωÞ ¼
i
2
hεcεqip;ω ¼ −NT2γDϵp2

iω −Dϵp2
; ð13Þ

where we add a contact term to ensure conservation of
energy at p ¼ 0. The thermal conductivity reads κ ¼
NTγDϵ (kB ¼ 1)–like σ, is OðNÞ.

Scaling collapse, Kadowaki-Woods, and Lorentz
ratios.—Electric or thermal conductivities are obtained
from limω→0Λ2=3ðωÞ=ω, expressed as integrals of real-time
correlation functions, and can be evaluated numerically for
any T, t0, U0. Introducing generalized resistivities, ρφ ¼ ρ,
ρε ¼ T=κ, we find remarkably that for t0, T ≪ U0, they
collapse to universal functions of one variable,

ρζðt0; T ≪ U0Þ ¼
1

N
Rζ

�
T
Ec

�
; ζ ∈ fφ; εg; ð14Þ

where RφðT Þ, RεðT Þ are dimensionless universal func-
tions. This scaling collapse is verified by direct numerical
calculations shown in Fig. 3(a). From the scaling form (14),
we see the low temperature resistivity obeys the usual
Fermi-liquid form

ρζðT ≪ EcÞ ≈ ρζð0Þ þ AζT2; ð15Þ

where the temperature coefficient of resistivity Aζ ¼
ðR00

ζð0Þ=2NE2
cÞ is large due to small coherence scale in

FIG. 3. (a) For t0, T ≪ U0, ρφ=ε “collapse” to Rφ=εðT=EcÞ=N.
(b) The Lorentz ratio ðκρ=TÞ reaches two constants ðπ2=3Þ, ðπ2=8Þ,
in the two regimes. The solid curves are guides to the eyes.
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denominator, characteristic of a strongly correlated Fermi
liquid. Famously, the Kadowaki-Woods ratio, Aφ=ðNγÞ2,
is approximately system independent for a wide range of
correlated materials [40,41]. We find here ðAφ=ðNγÞ2Þ ¼
ðR00

φð0Þ=2½S0ð0Þ�2N3Þ is independent of t0 and U0!
Turning now to the incoherent metal regime, in the

limit of large arguments, T ≫ 1, the generalized resistiv-
ities vary linearly with temperature: RζðT Þ ∼ cζT . We
analytically obtain cφ ¼ ð2= ffiffiffi

π
p Þ and cε ¼ ð16=π5=2Þ [37],

implying that the Lorenz number, characterizing the
Wiedemann-Franz law, takes the unusual value L ¼
ðκ=σTÞ → ðπ2=8Þ for Ec ≪ T ≪ U0. More generally, the
scaling form (14) implies that L is a universal function of
T=Ec, verified numerically as shown in Fig. 3(b). The
Lorenz number increases with lower temperature, saturat-
ing at T ≪ Ec to the Fermi-liquid value π2=3.
Conclusion.—We have shown that the SYK model

provides a soluble source of strong local interactions which,
when coupled into a higher-dimensional lattice by ordinary
but random electron hopping, reproduces a remarkable
number of features of strongly correlated metals, including
heavy quasiparticles with small spectral weight, a largely
system-independent Kadowaki-Woods ratio, T-linear high
temperature resistivity, and an anomalous Lorenz number in
the incoherent regime. The remarkable success of this simple
soluble model suggests exciting prospects for extending the
treatment to more realistic systems, and to shed light on the
physical content of various numerical results from dynamical
mean field theory [42], which shares significant mathemati-
cal similarity to basic equations of this work.
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