
Nonlinear Focusing in Dynamic Crack Fronts and the Microbranching Transition

Itamar Kolvin,1 Jay Fineberg,1 and Mokhtar Adda-Bedia2
1Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel 9190401
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Cracks in brittle materials produce two types of generic surface structures: facets at low velocities
and microbranches at higher ones. Here we observe a transition from faceting to microbranching in
polyacrylamide gels that is characterized by nonlinear dynamic localization of crack fronts. To better
understand this process we derive a first-principles nonlinear equation of motion for crack fronts in the
context of scalar elasticity. Its solution shows that nonlinear focusing coupled to rate dependence of
dissipation governs the transition to microbranching.

DOI: 10.1103/PhysRevLett.119.215505

Fracture is typically an irregular process [1–13]. Cracks
show a strong tendency for instability creating nonsmooth
surfaces with rich structure. Crack instabilities and their
associated structure exhibit a strong dependence on crack
velocity: slow tensile cracks (v ≪ cR, where cR is the
Rayleigh wave speed) are prone to nucleate steps which
drift along the crack front and divide the fracture surface into
facets [2–6]; faster tensile cracks may be unstable to both
void nucleation [8] and the formation of microbranches—
microscopic cracks that branch off the main crack front
[9–13]. Linear perturbation theory, however, predicts that
any initial disturbance to a tensile crack front should either
decay as the crack progresses [14–16] or disperse as out-
going waves [17,18]. Current linear theories are therefore
incapable of reproducing the observed fracture surfaces.
In recent nonperturbative approaches to fracture, such as

lattice models [19,20] and phase-field models [21,22],
localized crack branching arises naturally, regardless of
the specific dissipative process. Both approaches predict that
microbranching is governed by the microscopic dissipation
length scale and that instability initiates at vc ∼ 0.7cR. This
critical velocity is significantly higher than that observed in
experiments, and predicted from energy considerations in
the theory of 2D branching [23,24]. In addition, micro-
branch dimensions typically exceed the process zone size by
a few orders of magnitude. It therefore remains unclear what
component or mechanism is missing in the existing models.
In polyacrylamide gels, cracks exhibit a transition

between facet formation and microbranching at v ∼
0.05–0.1cR [6]. The transition is not sharp, and both types
of structures may coexist in the transition region. A typical
fracture surface (for v ∼ 0.06cR) shown in Fig. 1(a) features
both microbranches and facets. Shadow imaging of the
fracture plane reveals the in-plane projection of the crack
front dynamics during the formation of these structures, as
depicted in Fig. 1(b): in the upper right part of the panel, a
facet forms by a pair of steadily diverging steps. Each step
induces a cusplike deformation of the in-plane crack front.

In the lower left part of the panel, a microbranch similarly
initiates as a pair of diverging steps, that gradually change
their direction and converge. Although the global conditions
were identical, the two structures did not meet the same fate.
How does the crack “decide”which structurewill eventually
form?Aclose inspection reveals thatmicrobranch formation
involves stronger front curvatures than facet formation.
Hence, microbranches embody stronger perturbations to
the crack front.
While crack fronts execute both in-plane and out-of-

plane motions, we will study the response of a simplified
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FIG. 1. Experimental fracture surface (a) formed by tensile
crack fronts (b) moving at ∼0.06cR and displayed at 0.13 ms
intervals. The surface features both facets (upper and lower right)
and microbranches (upper and lower left). A pair of step lines
nucleate and diverge forming a facet (black arrows) while a
microbranching event ends with cusp formation (red arrows). The
black scale bars are 200 μm long. (c) Geometry of the model.
Two line loads pmoving with a speed v are driving a planar crack
front at a distance l. The crack front is perturbed around a straight
configuration with amplitude fðz; tÞ. (d) Crack fronts, calculated
via Eq. (1), move at velocity v ¼ 0.05c and encounter obstacles
with increasing toughness; see text following Eq. (3) for details.
Fronts are plotted at the same time intervals as in (b) when
identifying c ¼ cR.
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in-plane model to externally induced perturbations. This
model retains all of the essential features of the full
elastodynamic problem [25]. As the transition to micro-
branching apparently depends on the amplitude of the
perturbation, we must consider nonlinear perturbations to
dynamic crack fronts. In this framework, we derive and
solve an equation of motion for planar crack fronts that is
exact to the 2nd order in front perturbation. In a homo-
geneous and isotropic medium, crack front motion is
dictated by specifying the local normal velocity v⊥ [26].
Cracks propagate when the energy flow into the crack per
unit area, G or energy release rate, is balanced by the
dissipation Γ involved in creating the two new fracture
surfaces. Energy flow into the crack tip is regulated by a
universal function gðv⊥Þ, which approaches 1 when v⊥ → 0
and 0 when v⊥ → cR [27]. Consider a straight crack front
confined to the xz plane and propagating along the x axis
with velocity v. When the front is perturbed, i.e., its position
is given by x ¼ vtþ fðz; tÞ [see Fig. 1(c)], local energy
balance G ¼ Γ reads

G0gðv⊥Þð1þH½f�Þ ¼ Γðx; z; v⊥Þ; ð1Þ

whereG0 is the energy release rate of the unperturbed crack.
The perturbation f introduces a termH½f�which depends on
the history of the crack front, and can be computed order by
order in f, through a solution of the elastodynamic problem
[17,28–30]. The fracture energy Γ may vary locally along
the front and depend on crack velocity [31,32].
Computing G requires an asymptotic solution of

the 3D vector displacement field in the vicinity of the
crack front. For a tensile (mode I) crack, G is given by the
J integral involving the product of stress and displace-
ment rate [27]. A calculation results in the expression
G ¼ PK, where K¼ ffiffiffiffiffiffi

2π
p

limX→0þσyyðx;0;zÞX1=2 and P ¼
limX→0−uyðx; 0; zÞð−XÞ−1=2 are the stress and displace-
ment intensity factors, respectively [30]. Here σij denotes
the stress tensor, ui is the displacement vector, and
X ¼ x − vt − f. The mode I elastodynamic problem
consists of simultaneously solving three decoupled scalar
wave equations, with wave velocities being the longi-
tudinal and the shear wave speeds, respectively. Free
boundary conditions on the crack faces, however, mix the
wave polarizations, rendering the problem quite formi-
dable. Nonlinear corrections to G have not been explicitly
computed yet in the general dynamic case [29,33].
Fortunately,G can also be derived in a simpler analogous

model which involves only a single scalar field ϕ satisfying
a wave equation with wave speed c [25,34]. In the
quasistatic limit, the elastic fields in the bulk can be exactly
written in terms of the scalar potential ϕ [35], and on the
y ¼ 0 boundary one obtains the simple forms uy ¼ ϕ and
σyy ¼ ∂yϕ. Moreover, both the scalar model and mode I
elastodynamics contain wavelike modes that maintain front
coherence, and the universal function in the scalar model,

gðvÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − v=cÞ=ð1þ v=cÞp

, closely resembles that of
the mode I fracture [36]. In the following, we set c ¼ 1 for
convenience.
Our derivation of G uses a matched asymptotic expan-

sion (MAE) approach [30]. Here we present only a sketch
of the derivation, which will be provided in detail elsewhere
[37]. Figure 1(c) depicts a crack front driven by two line
loads p located at a distance l from the crack front
and moving at a constant velocity v. In the absence of
perturbations, the loads p cause the crack front to propagate
steadily at a velocity v. Since our problem is symmetric
with respect to the y ¼ 0 plane, the scalar field ϕ can be
determined by solving the wave equation in the y > 0
half-space with zero displacement ϕjy¼0 ¼ 0 for X > 0 and
zero stress ∂yϕjy¼0 ¼ 0 for X < 0.
The MAE consists of matching solutions at two scales of

the problem. Assuming that f ≪ l, we first find an “inner”
solution for ϕ in the vicinity of the crack front written as an
expansion in powers of X and of f. The inner solution
contains integration constants that should be determined by
matching to an “outer” solution dominated by the length
scale of the system l. In the inner solution, the most singular
power must be ϕ ∼ X1=2 since it ensures a finiteG. Far from
the crack front, however, the expansion X1=2 ≃ ffiffiffiffiffiffiffiffiffiffiffiffi

x − vt
p

−
1
2
ðf= ffiffiffiffiffiffiffiffiffiffiffiffi

x − vt
p Þ − 1

8
½ðf2Þ=ðx − vtÞ3=2� þ � � � only appears to

create stronger “unphysical” singularities at the location of
the unperturbed front x ¼ vt. The outer solution, which can
be found independently of f, is expanded in powers of
x − vt and the coefficients obtained from both solutions are
then compared. For each order of the perturbation only a
finite number of coefficients needs to be matched. By this
method, the intensity factors P and K are obtained from the
coefficient of the X1=2 component of the field ϕ.
The main result of our calculation is an expression

for the history functional H½f� up to second order in
f. First, we define the linear functionals in Fourier
space Ψ̂½f̂� ¼ αk

R

t
−∞ dt0J1½αkðt − t0Þ�f̂ðk; t0Þ=ðt − t0Þ and

Ψ̂2½f̂� ¼ α2k2
R

t
−∞ dt0J2½αkðt − t0Þ�f̂ðk; t0Þ=ðt − t0Þ, where

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

, J1 (J2) is the 1st (2nd) order Bessel functions
and the hats denote the spatial Fourier transform, i.e.,
f̂ðk; tÞ ¼ R

dze−ikzfðz; tÞ. With these definitions the his-
tory functional is given in real space by

H½f� ¼ −
1

α2
Ψ½f� þ 1

4α4
Ψ½f�2 þ 1

2α4
Ψ½fΨ½f��

−
1 − 2v
4α4

Ψ2½f2� −
1þ 2v
2α4

fΨ2½f�: ð2Þ

In this expression we neglected terms of order Oðf=lÞ, and
consequently H½f� becomes invariant to translation
f → f þ C, where C is a constant. Taking f to be time
independent and v → 0, Eq. (2) recovers the corrections to
G calculated for quasistatic crack fronts [38]. On the other
hand, assuming that f does not depend on z, the history
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functional is identically zero, and Eq. (1) becomes the 2D
equation of motion given in Ref. [25].
Equation (1) neatly links local dissipation involved in the

creation of new surfaces with the elastodynamic response
of the crack front. In experiment, the cost for creating a unit
surface area may be rate dependent and the formation of
surface and subsurface structure locally increases dissipa-
tion. Here we mimic the experimental situation by express-
ing the fracture energy as a product of two parts,

Γðx; z; v⊥Þ ¼ Γ0ðv⊥Þ½1þ δAðx; zÞ�; ð3Þ

where the “bare” fracture energy Γ0ðvÞ ¼ ~Γ0ð1þ avÞ
grows linearly with crack velocity and δA quantifies the
local relative increase in dissipation.
We now test how crack fronts respond dynamically to

perturbations. Expanding all quantities in Eq. (1) to the 2nd
order in f we obtain a nonlinear equation of motion for the
crack front [39]. The explicit equation of motion contains a
geometric term 1

2
vf2z which accounts for propagation along

the local normal to the front, elastic terms that stem from
H½f�, and dissipative terms that depend on δA. We may now
numerically propagate the crack front using an Euler
scheme under periodic boundary conditions along an
interval of length Z [see Fig. 1(c)].
We first test the crack front response to a disk-shaped

obstacle. δA is taken to be constant inside the obstacle,
while decaying smoothly and rapidly to zero outside. To
minimize system size effects we take the diameter of the
obstacle to be d ¼ 0.025Z. Figure 1(d) shows crack fronts
moving at v ¼ 0.05 and encountering obstacles with
increasing toughness. The fronts were discretized over
N ¼ 512 mesh points. As in the polyacrylamide gels used
in our experiment, we assumed that the fracture energy
grows linearly with velocity with a ¼ 4. As the obstacle
toughness increases, the crack front dynamically develops
increasingly higher curvatures while detaching from the
obstacle. During detachment the elastic tension stored in
the front is released, driving the crack front to accelerate to
high velocities. Increasing mesh resolution did not affect
the peak curvature, indicating that elasticity arrests further
curvature growth.
Surprisingly, crack front dynamics are defocusing when

the fracture energy is velocity independent (i.e., a ¼ 0).
Figure 2 compares curvature evolution for a ¼ 0 and a ¼ 4
at v ¼ 0.3 and δA ¼ 1.2. When a ¼ 4, the front locally
decelerates as it enters the obstacle and curvature builds up
continuously, first gradually and then rapidly as it breaks
free. Comparison with the solution using only 1st order
terms shows that the nonlinearities produce curvatures up
to ∼6κdisk ¼ 12=d, while front curvature remains ∼κdisk
when suppressing nonlinearity. For a ¼ 0, the velocity-
independent case, the front curvature quickly reaches a
plateau at ∼κdisk=2, while a 1st order solution under the
same conditions develops higher curvatures.

The transition from crack front defocusing to self-focus-
ing with increasing a is a generic property of the nonlinear
equation of motion. Equation (1) can be solved analytically
in the case of a time-independent cosine perturbation δA ¼
D cosðzÞ. The resulting front shape is fðzÞ ¼ −αD cosðzÞ þ
D2v2tþD2f2 cosð2zÞ where v2 and f2 are rational func-
tions of a and v [39]. The point of maximum curvature is
z ¼ 0 and there f00ðz ¼ 0Þ ¼ αD − 4D2f2, so the front is
focusing when f2<0 and defocusing otherwise. Analysis
shows that f2 becomes negative when the dimension-
less parameter

ffiffiffiffiffiffiffiffiffiffiffi

1−v2
p

dlogΓ0=dv¼a
ffiffiffiffiffiffiffiffiffiffiffi

1−v2
p

=ð1þavÞ≳1.
Thus, front curvature grows sublinearly with D when
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

d logΓ0=dv≲ 1 and superlinearly otherwise. An
extensive study of the ða; vÞ parameter plane for the
encounter of a front with a disk-shaped obstacle yielded
the same trends [39].
Can the nonlinear self-focusing seen here drive the

transition from facet to microbranch formation? As seen
in Fig. 1(b), both structures are composed of step lines that
in one case diverge and in the other converge. To answer
this question we use the results of our experimental studies
of facet formation [6], which showed that the formation
of a step incurs a local energetic cost of Γ0δAðz − z0Þ.
Here z0 is the position of the step along the front and
δA ¼ ðD=πÞ½1� αðz=wÞ�=½1þ ðz=wÞ2�, where α ¼ 0.24.
During crack propagation steps drift and grow, leading
to changes in position z0 and width w. The width is
assumed to be much smaller than system dimensions
w ≪ Z, so that δAðzÞ is a sharply peaked distribution.
Locally, a step-line forms a constant ∼45° angle with the
front slope [6]. To numerically propagate the distribution
δA we draw a 45° line from z0 at a given time step and its
intersection with the front at the next time step determines
the new value of z0.

0 1 2 0

1

3

5

1 2

FIG. 2. Change of front dynamics from defocusing to focusing
when increasing a ¼ ðd logΓ0=dvÞjv¼0. Panels show curvature
evolution at the obstacle midline for velocity-independent frac-
ture energy (left) and for velocity-dependent fracture energy
(right). Here v ¼ 0.3, δA ¼ 1.2 and κdisk ¼ 2=d ¼ 80=Z. The 1st
order solution is drawn for comparison (dashed line). Insets
depict crack front profiles drawn over the spatial fracture energy
distribution.
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Lastly, we need to specify how steps grow with crack
propagation. To this end, we consider the measured growth
of step height h obtained by profilometry on surfaces
formed by the tensile fracture of polyacrylamide gel (for
details, see Ref. [6]). While step growth is highly sensitive
to the presence of neighboring step lines and sample
boundaries, we find that steps nucleating in pairs at a
sufficient distance from other structures follow a reproduc-
ible trend, as shown in Fig. 3. Step heights grow along the
step-line backbone s as h=ξ ∼ ðs=ξÞb with b ¼ 0.6� 0.1
and ξ ¼ 2� 1 μm. Assuming that step widths and heights
grow in proportion to each other, we take w ¼ ½ξðxþ ξÞ�0.5
where x is the position of the front at time t and z ¼ z0; the
distribution δA has a width w ¼ ξ at t ¼ 0.
We numerically solve Eq. (1) for two initially diverging

step lines with the parameters v ¼ 0.1; a ¼ 4; ξ ¼ 0.0016Z.
Step-line centers were initially separated by 10ξ and the
front was straight.
The left panel of Fig. 4 depicts crack front and local

fracture energy evolution for an amplitude of D ¼ 2. The
two step lines diverge with an angle that continually
increases during propagation. Increasing the amplitude
of δA to D ¼ 3 causes the step lines to converge instead
of diverging (see the right panel of Fig. 4). In our previous
study [6] we have seen that

R

dzδA ∼ 1.4h. For w ∼ h=2,
this relation translates into D ∼ 2.8. This suggests that
convergence in the simulation may occur within the same
parameter range as observed experimentally.
Additional simulations show similar trends; decreasing a

and increasing v pushes the transition to step-line con-
vergence to higher values of D. Changing ξ, however, does
not affect the transition, but only the overall scale of the
process. When solving Eq. (1) under the same conditions as
Fig. 4, but neglecting 2nd order terms, no convergence was
observed.
How general is the nonlinear focusing observed here?

The crack front equation of motion presented here was

derived in the context of a scalar approximation to elasticity
and based on the assumption of planarity. We believe,
however, that our results are not constrained by these
assumptions. Perturbations of the crack front in both scalar
and vector models generically decay. When a ¼ 0, the
wavelike modes that transmit stress along the crack front
decay as 1=

ffiffi

t
p

in the scalar model following an encounter
with an asperity; in mode I elastodynamics, wave ampli-
tudes undergo a short decay phase followed by a fixed
value (“front waves”) [36]. However, for a > 0 these
modes decay exponentially in both theories. Moreover,
the dimensionless parameter

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

d logΓ0=dv will arise
in any nonlinear treatment of crack front perturbations,
independent of the model used. Planarity, on the other
hand, coupled with locally increased dissipation appears to
be a good approximation to the in-plane shape of crack
fronts forming surface structures, as was shown in Ref. [6].
This observation relies on the increase in dissipation due to
the additional surface area formed by the crack. However,
considering the full 3D dynamics is crucial for any
theory attempting to capture step growth, drift, and step
intersections.
What are the implications of our results to the micro-

branching instability? Microbranching is a complex phe-
nomenon, and some of its features are material dependent.
Our findings suggest that microbranch localization in z
results from the development of high in-plane curvature
along the crack front. Our model predicts how local
curvature is controlled by three parameters: the local
dissipation δA, the crack velocity v, and ðd logΓ0=dvÞ ¼
a=ð1þ avÞ. In the linear limit δA ≪ 1; δA increases
curvature while v diminishes it. When δA ∼ 1 nonlinear
effects become important. For

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

d logΓ0=dv ≤ 1
curvature increase with dissipation is sublinear while for
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

d logΓ0=dv ≥ 1 it is superlinear. In experiments,
δA and v are not independent; as v increases, surface and
subsurface structure becomes more complex leading to
dynamically increased dissipation with v. This effective
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FIG. 3. The growth of step height along the step-line backbone
s taken from pair nucleation events. Data are shown from nine
step lines taken from five events. For two of the step lines (red and
blue points), we performed a high resolution measurement
(at 0.5 μm=pix). (inset) The high resolution surface scan.

0.
1 6

FIG. 4. Transition from step-line divergence (left) to step-line
convergence (right) when increasing the dissipation amplitudeD.
Here v ¼ 0.1, a ¼ 4, and ξ ¼ 0.0016Z. This is the same
qualitative behavior as observed experimentally in Fig. 1(b).
See movies in the Supplemental Material [39].
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increase in δA may be significant, possibly explaining why
experiments [6,10] indicate that faster cracks are more
susceptible to out-of-plane perturbations.
A previously unappreciated dimensionless parameter,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

d logΓ0=dv, that controls the sign and magnitude
of nonlinear focusing, may explain at least part of the
variation in microbranching between materials. For exam-
ple, self-focusing might be the reason why in polyacryla-
mide gels, where a ∼ 3.3, microbranches appear at
v ∼ 0.1cR, and in soda-lime glass, where a ∼ 0, micro-
branches appear at v ∼ 0.4cR. Further study of crack front
dynamics in the presence of nonlinear elasticity [40,41] as
well of the nucleation and growth of surface structure is
needed to clarify our understanding of the microbranching
transition.
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