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We consider the contribution to the density of vibrational states and the distribution of energy barrier
heights of incipient instabilities in a glass modeled by a jammed packing of spheres. On approaching an
instability, the frequency of a normal mode and the height of the energy barrier to cross into a new ground
state both vanish. These instabilities produce a contribution to the density of vibrational states that scales as
ω3 at low frequencies ω, and a contribution to the distribution of energy barriers ΔH that scales as ΔH−1=3

at low barrier heights.
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Disordered solids inhabit an extremely high-dimensional
rugged energy landscape with a vast number of metastable
minima [1,2]. Dealing with such a complex topography
poses challenges for understanding how the system moves
among metastable basins as a result of thermal excitations
or external perturbations such as compression or shear.
Here we focus on instabilities induced in zero-temperature
(T ¼ 0) systems by applied compression or shear as a first
step in understanding how a disordered solid traverses its
landscape.
When a system in a given energy basin becomes unstable

at T ¼ 0, a potential-energy barrier must vanish along some
direction in configurational space so that the curvature
vanishes in this direction, implying a mode of vibration
with frequency ω ¼ 0 [3–7]. As a result, low-frequency
quasilocalized modes have particularly low energy barriers
[8–11] and contain predictive information about incipient
instabilities [12] that are spatially localized, and can be
identified via anharmonic analysis of the energy landscape
[13–16] as well as by purely structural measures [17].
Zero-temperature jammed sphere packings provide

special insight into this physics. At the jamming transition,
the density of states, DðωÞ, is nearly constant down to
arbitrarily low ω [18,19], and the removal of a single bond
leads to the creation of a zero-frequency mode. At densities
above the transition (i.e., at nonzero pressure), the packings
are susceptible to small (but finite) perturbations that push
the system into new energy minima [10,20–24]. At low
temperatures, one expects the lowest energy barriers to
control how the system explores its landscape; the study of
instabilities at T ¼ 0 thus provides insight into behavior
beyond the harmonic approximation.
In this Letter, we study jammed packings in three

dimensions and calculate DðωÞ and the distribution,
PHðΔHÞ, of energy barriers ΔH corresponding to the
most vulnerable directions in the energy landscape for

encountering an instability. These distribution functions
depend on the distance to the jamming transition. The
contribution of incipient instabilities to DðωÞ scales as ω3

for both compression and shear. The number of compres-
sion instabilities per strain scales with system size, N, in
such a way that their contribution to DðωÞ vanishes in the
thermodynamic limit. However, the number of shear
instabilities per strain has a stronger dependence on N,
consistent with earlier results [25]. This leads to a con-
tribution to DðωÞ that survives in the thermodynamic limit.
We also find that the distribution of energy barriers
corresponding to incipient instabilities varies as PHðΔHÞ ∝
ΔH−1=3 so that in the thermodynamic limit the system is
marginally stable. By marginal stability, we mean that an
infinitesimal perturbation can push the system over an
energy barrier into a new ground state. Our results lead to a
refined understanding of marginal stability in jammed
packings.
Fold instability.—We first review the expected scaling of

the lowest vibrational mode frequency and barrier height
as the system is compressed or sheared towards the stress τi
at which the instability occurs. For compression, τ is the
pressure p; for shear, τ is the shear stress Σ. We control τ,
so the relevant landscape is the enthalpy landscape. The
enthalpy of a system is H ¼ U þ pV for compression, and
its counterpart isH ¼ U − ΣγV for shear [26], whereU, V,
and γ are the potential energy, volume, and shear strain,
respectively. Consider HðxÞ along the “reaction coordi-
nate” x in configurational space. Assume that the saddle
point is at x ¼ 0 when τ ¼ τi, as shown in Fig. 1(a). There
is no linear or quadratic term in x since the system is
unstable at τi and the curvature (or the square of the mode
frequency) must vanish. H must therefore generically be
cubic in x. We now retreat from the instability, so that
τ < τi. The lowest nonvanishing coupling between δτ≡
τi − τ and x is generically linear,
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H ¼ −
1

3
a3x3 þ cxδτ: ð1Þ

Here we assume that a3 > 0, so that at δτ ¼ 0 (at the
instability) the system is unstable towards a minimum that
lies at x > 0. The linear term shifts the minimum to x0 ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cδτ=a3

p
(c > 0), as shown in Fig. 1(a). Expanding H

around x ¼ x0 in Eq. (1), we find

H ¼ 2

3
a3x30 − a3x0ðx − x0Þ2 −

1

3
a3ðx − x0Þ3

þO½ðx − x0Þ4�: ð2Þ

Therefore ω2
L ¼ −2a3x0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
ca3δτ

p
, where ωL, the fre-

quency of the mode associated with the instability, is

ωL ¼ ð4ca3Þ1=4ðδτÞ1=4: ð3Þ
This typical scaling of a fold instability [27] has long been
observed in studies of soft modes in glassy systems [3–6].
The energy-barrier height scales as

ΔH ¼ 4

3

c3=2

a1=23

ðδτÞ3=2: ð4Þ

Simulations.—We confirm this scaling using numerical
simulations of three-dimensional systems of N ∈
½250; 4000� frictionless spheres. We consider jammed

packings with a Hertzian interaction potential [28] between
particles i and j,

UðrijÞ ¼
2ϵ

5

�
1 −

rij
σij

�
5=2

Θ
�
1 −

rij
σij

�
; ð5Þ

where rij and σij are the separation between particles i and
j and sum of their radii, respectively, ϵ is the characteristic
energy, and ΘðxÞ is the Heaviside step function. Periodic
boundary conditions are applied in all directions in the
absence of shear; in the case of shear, we use Lees-Edwards
boundary conditions [29]. We study a 50∶50 mixture of
particles with diameters σ and σL ¼ 1.4σ, respectively.
All particles have the same ϵ and mass m. The units of
length, mass, and energy are σ,m, and ϵ. The frequency has
units

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ=mσ2

p
.

By rapidly quenching ideal-gas states to T ¼ 0 using a
fast inertial relaxation engine algorithm [30], we minimize
the enthalpy at fixed pressure to obtain mechanically stable
disordered solids. For each system size, we generate 5000
distinct states at the desired pressure p. To study com-
pression instabilities, we then compress each state by
increasing p while minimizing the enthalpy, until there
is an abrupt change of volume or packing fraction corre-
sponding to the first instability for that initial state. To study
shear instabilities, we apply shear stress Σ in the analogous
quasistatic fashion and minimize the enthalpy, until there is
an abrupt change of the shear strain γ. To calculate the
vibration modes, we diagonalize the Hessian matrix cor-
responding to the appropriate generalized free energy using
ARPACK [31].
Figures 1(b)–1(d) show examples of the approach to a

compression and a shear instability at pi and Σi, respec-
tively [32]. The packing fraction ϕ or shear strain γ is
shown versus p or Σ in Fig. 1(b). At p ¼ pi or Σ ¼ Σi
(δτ ¼ 0), the bulk or shear modulus vanishes [33,34].
The frequency of the mode associated with the insta-

bility, ωL, is shown in Fig. 1(c) as we approach the
instability. As expected, ωL ∼ δτ1=4 for both compression
and shear. In addition, Fig. 1(d) shows that the height of the
enthalpy barrier vanishes on approaching the instability as
ΔH ∼ δτ3=2, as expected.
Distribution functions.—The values of the distance to the

nearest instability, δτ, and the variables c and a3 defined in
Eq. (1), vary fromone enthalpyminimum to another, and can
also depend on whether the instabilities are due to com-
pression or shear. For an ensembleof initial enthalpyminima,
we characterize the ensembles of compression and shear
instabilities in terms of their respective distributions: PτðδτÞ
for the distance to the nearest instability, PτcðcÞ for the
coupling constant c, andPτaða3Þ for the cubic coefficient a3.
Figure 2(a) shows that PτðδτÞ is approximately constant

with increasing δτ until it falls off at δτy for both
compression and shear. Because we calculate only the
distance from τ to the first instability (at τi), δτy corre-
sponds to the yield stress and is comparable to the stress
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FIG. 1. (a) Schematic plot of the enthalpy landscape H along
the reaction coordinate x at the stress corresponding to the
instability, τi (solid), and at a stress below the instability, τ < τi
(dot-dashed), where the minimum is shifted to x0. (b) Examples
of the response of packing fraction ϕ and shear strain γ to the
increase of stress τ upon approaching the compression (circles)
and shear (squares) instabilities at ϕi and γi, where δτ≡ τi − τ.
The lines are guides for the eye. (c),(d) Frequency ωL and
enthalpy barrier height ΔH for the mode associated with the
instability as a function of δτ for compression (circles) and shear
(squares). The lines in (c) and (d) indicate the expected power-law
scalings ωL ∼ δτ1=4 and ΔH ∼ δτ3=2, respectively.
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interval between instabilities. The distributions for different
system sizes collapse when δτ is scaled by NαN, with αN ¼
0.33� 0.05 for compression and 0.65� 0.06 for shear.
This implies that δτy ∝ N−αN . The same scaling of the
distance between shear instabilities has been observed in
several models with decaying power-law interactions,
including Lennard-Jones systems [5,25,35,36]. It is asso-
ciated with an exponent θe > 0 characterizing the distri-
bution of yield stresses as well as the existence of
avalanches [37,38], such that δΣy ∝ N−1=ðθeþ1Þ. Sublinear
scalings in 1=N are also seen in calculations of energy
barriers in mean-field spin glasses [39,40], where this
decrease may be associated with the fractal nature of the
energy landscape—a feature also predicted for jammed
packings in infinite dimensions [41].
Figure 2(b) shows how PτðδτÞ depends on the initial

pressure p: δτy ∝ pαp with αp ¼ 0.73� 0.03 for compres-
sion and 1.08� 0.05 for shear. As expected, the yield stress
vanishes as the jamming transition is approached.
Figure 2(c) shows that the distribution of c is indepen-

dent of N and is fairly innocuous with a peak at c ≈ 0.16

for compression and c ≈ 1.6 for shear, when p ¼ 10−3.
Figure 2(d) shows that the shape of the c distribution does
not change appreciably with pressure. We find that the
peak position cmax and amplitude Pτc;max are (0.10,5.15),
(0.16,3.92), and (0.20,3.49) for compression and
(1.78,0.31), (1.55,0.34), and (1.54,0.38) for shear, at
pressures p ¼ 10−4, 10−3, and 10−2, respectively.
The distributions of cubic coefficient, Pτaða3Þ, are within

numerical error for compression and shear, as shown in
Figs. 2(e) and 2(f). For both cases, there is a broad,
approximately power-law, distribution of a3 that is cut
off at low values of a3. As N increases, the minimum shifts
to lower a3 as N−0.3�0.1 for both compression and shear.
As the pressure is reduced towards the jamming transition,
the distribution appears to approach a pure power law of
Pða3Þ ∼ a−1.03 at small a3, as the peak value vanishes
approximately as p0.75�0.05.
Density of states and energy barriers.—We now con-

sider the contribution of compression and shear instabilities
to the density of states,DðωÞ, and the distribution of energy
barriers, PHðΔHÞ, at a given pressure p and at Σ ¼ 0. An
incipient instability at τi will contribute a mode at a
frequency given by Eq. (3) and a barrier height given by
Eq. (4). The contribution of instabilities to DðωÞ or to
PHðΔHÞ is therefore the sum over the contributions of all
of the incipient instabilities. The number of compression
instabilities in a given pressure interval is Pp ∝
1=δpy ∼ N0.33p−0.73. Similarly, the number of shear insta-
bilities in a given shear-stress interval is PΣ ∝ 1=δΣy∼
N0.65p−1.08. The contribution of either compression or
shear instabilities to the normalized density of states is

DðωÞ ¼ Pτ

3N

Z
∞

τ
dτi

Z
∞

0

da3Pτaða3Þ

×
Z

∞

0

dcPτcðcÞδ(ω −
ffiffiffi
2

p
ðca3δτÞ1=4); ð6Þ

where the lower limit of the first integral is τ ¼ p for
compression instabilities and τ ¼ 0 for shear instabilities.
The contribution to the distribution of energy barriers is

PHðΔHÞ ¼ Pτ

Z
∞

τ
dτi

Z
∞

0

da3Pτaða3Þ
Z

∞

0

dcPτcðcÞ

× δ

�
ΔH −

4

3
c3=2a−1=23 ðδτÞ3=2

�
: ð7Þ

In the low-frequency limit, Eq. (6) leads to

DðωÞ ¼ Pτha−13 iτhc−1iτ
3N

ω3; ð8Þ

where ha−13 iτ ¼
R
∞
0 da3Pτaða3Þa−13 and hc−1iτ ¼R∞

0 dcPτcðcÞc−1.
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FIG. 2. System-size (left panels) and pressure dependence
(right panels) of the distributions of δτ, c, and a3 characterizing
compression and shear instabilities. For the left panels, system
sizes are N ¼ 250, 1000, and 4000 (circles, squares, and
diamonds for compression and upward, downward, and leftward
triangles for shear), all at p ¼ 10−3. For the right panels,
pressures are p ¼ 10−4, 10−3, and 10−2 (circles, squares, and
diamonds for compression and upward, downward, and leftward
triangles for shear), all at N ¼ 1000. Lines are guides for the eye.
The dot-dashed line in panel (f) has a slope of −1.
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Equation (8) shows that both compression and shear
instabilities give rise to an ω3 contribution to DðωÞ. The
scalings in Fig. 2 show that the contribution to DðωÞ
vanishes as N−0.37�0.15 as N → ∞ for compression insta-
bilities, so that they do not contribute to the density of
normal modes of vibration in the thermodynamic limit.
For shear instabilities, there is a different scaling of PΣ than
there is for Pp: PΣ ∼ N0.65�0.06. (However, the scaling of
ha−13 iΣ is the same within our numerical uncertainty as that
for ha−13 ip). From Eq. (8) we see that for shear instabilities,
the N dependence of the contribution to DðωÞ scales as
N−0.05�0.16, so that there is no N dependence within
measurement error. This implies that the contribution of
shear instabilities to the density of states survives in the
thermodynamic limit.
For low-energy barriers, we find from Eq. (7)

PHðΔHÞ ¼
�
1

6

�
1=3

Pτha1=33 iτhc−1iτΔH−1=3; ð9Þ

for both compression and shear instabilities. Note that if
Pτaða3Þ ∼ 1=a3 at large a3, as suggested by the dot-dashed

line in Fig. 2(f), then ha1=33 iτ diverges at the high a3 (low-
energy barrier) end. A closer look at Fig. 2(f), however,
suggests that Pτaða3Þ bends down more rapidly than 1=a3
at high a3. We therefore assume that ha1=33 iτ is finite. In that
case, PH increases with Ppha1=33 ip ∝ p−0.48�0.05 for com-

pression instabilities and PΣha1=33 iΣ ∝ p−0.83�0.07 for shear
instabilities.
Discussion and conclusions.—Sphere packings with

soft, finite-ranged repulsions are marginally stable to
extended instabilities at the jamming transition at zero
pressure, where there are the minimum number of contacts
needed for mechanical stability [18,20]. As the system is
compressed above the transition, the connectivity increases,
but at a pressure p, the system is still close to the limit of
stability with respect to compression—it is just slightly
above the minimum connectivity needed to support that
pressure against extended instabilities [10,24]. One main
conclusion of our analysis is that a finite-sized jammed
solid is nearly marginally stable with respect to compres-
sion or shear and becomes marginally stable in the
thermodynamic limit. In that limit an infinitesimal increase
in either stress will lead to an instability and the vanishing
of a mode frequency. These instabilities are only a subset of
all possible localized instabilities that can be triggered by
applied stresses. Simulations have demonstrated that
low-frequency, localized, anharmonic modes in jammed
systems can produce echo phenomena [42]. The low-
frequency modes arising from these instabilities might
provide a source for the phonon echoes observed in
experiments but which have previously been ascribed to
quantum-mechanical two-level systems [43].

A consequence of marginal stability to localized insta-
bilities is the predicted contribution of ω3 to the density of
states. A low-frequency density of states scaling as ω2

(consistent with mean-field expectations [44]) has been
reported [45] while others find ω4 [46,47]. The ω4 scaling
has been predicted for stable finite-size disordered systems
[48] and typically dominates for finite systems, which are
stable to localized instabilities. However, it has recently
been reported that the low-frequency density of states for a
T ¼ 0 disordered glass of particles with inverse power-law
repulsions scales asDðωÞ ∼ ω3 if the glasses were prepared
by sufficiently rapid quenching from a sufficiently high
temperature [49]. For sufficiently slow quenches from
lower temperatures, DðωÞ ∼ ω4 was found for N ¼ 2000

particle systems. These findings are consistent with our
results. Rapidly quenched systems should have more “soft
spots” [12] or, equivalently, more incipient instabilities than
slowly quenched systems. Thus, the number of instabilities
per stress interval, Pτ, should be higher for rapidly
quenched systems, possibly leading to a dominant ω3

contribution even in finite systems.
One interesting conclusion from our results is that the

nature of the ground states in jammed systems has
universal anharmonic as well as harmonic properties.
Harmonic properties such as the elastic moduli and
density of vibrational states are universal in jammed
packings of particles with repulsive, finite-ranged poten-
tials and the existence of universal anharmonic features
has previously been hinted at in jammed systems [8]. The
anharmonic features studied here, however, are likely to
be even more broadly universal because they originate
from the scaling of the fold instability. Such instabilities
have been found in Lennard-Jones glasses [3–6], and the
scaling of the shear yield stress for our jammed packings
is the same as that observed earlier for Lennard-Jones
glasses [25]. As long as the distribution of a3 has finite
and nonzero values of ha−13 i and ha1=33 i, the scalings we
predict for the density of states and energy barrier
distribution should hold.
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