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We present the first threshold and jet radius jointly resummed cross section for single-inclusive hadronic
jet production. We work at next-to-leading logarithmic accuracy and our framework allows for a systematic
extension beyond the currently achieved precision. Long-standing numerical issues are overcome by
performing the resummation directly in momentum space within soft collinear effective theory. We present
the first numerical results for the LHC and observe an improved description of the available data. Our
results are of immediate relevance for LHC precision phenomenology including the extraction of parton
distribution functions and the QCD strong coupling constant.
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Introduction.—The inclusive production of jets plays a
crucial role at the LHC and the corresponding cross section
has been measured with great accuracy by ALICE, ATLAS,
and CMS Collaborations [1–6]. From the theoretical point
of view, inclusive jet production constitutes a benchmark
process that is used to determine universal nonperturbative
quantities like parton distribution functions (PDFs) and the
QCD strong coupling constant αs. In this sense, a very good
understanding of the relevant QCD dynamics for inclusive
jet production at the LHC is crucial as it will impact the
comparisons between theory and data for other processes as
well. Furthermore, high transverse momentum jets are
promising observables for the search of physics beyond
the standard model.
In order to match the achieved experimental precision for

the process pp → jetþ X, ongoing theory efforts have
recently succeeded in calculating the fully differential cross
section at next-to-next-to leading order (NNLO) [7,8]. The
results were presented for all partonic processes in the
leading-color approximation for the α2s coefficient. While
the completion of the NNLO results marks a new milestone
for high precision QCD calculations, there are, never-
theless, remaining theoretical uncertainties. Recent com-
parisons of the NNLO predictions with the ATLAS
measurements suggest that even at NNLO the results still
heavily rely on the scale choice [6]. Slightly different scale
choices can lead to quite different NNLO predictions which
indicates large higher-order perturbative corrections as well
as an underestimation of the QCD scale dependence as
pointed out in Refs. [9,10]. From a practical point of view,
any information beyond fixed NNLO accuracy can only be
accessed by using resummation techniques, where domi-
nant classes of logarithms are summed up to all orders in
the strong coupling constant. In this work, we focus
specifically on the joint resummation of the following
two numerically important classes relevant for the current

experimental kinematics: threshold logarithms and loga-
rithms in the jet-size parameter R.
The importance of resumming single logarithms in the jet-

size parameter αns lnn R was addressed in Refs. [10–13]. The
so-called threshold logarithms arise near the exclusive phase
space boundary, where the production of the signal jet just
becomes possible.At threshold, the invariantmass

ffiffiffiffiffi
s4

p
of the

unobserved partonic system recoiling against the signal jet
vanishes. Note that the signal jet retains a finite invariant
mass at threshold, allowing for radiation inside the jet
cone [14,15]. The cancelation of infrared divergences
leaves behind logarithms of the form αns ½lnkðzÞ=z�þ, with
k ≤ 2n − 1, and z ¼ s4=s, where s is the partonic center-of-
mass (c.m.) energy. In the threshold limit as z → 0, these
terms become large and need to be resummed to all orders so
as to obtain reliable perturbative results. In Ref. [15], it was
shown that threshold logarithms dominate indeedover awide
range of the jetpT even far away from the hadronic threshold
due to the steeply falling parton luminosity functions.
Even though the threshold resummed cross section for

hadronically produced jets was addressed before in
Refs. [16,17], it has so far eluded a numerical evaluation.
Traditionally, threshold resummation is derived in Mellin
moment space [18–20] and was applied to the rapidity
integrated inclusive jet cross section in Ref. [21] at next-
to-leading logarithmic (NLL) accuracy. However, in order to
allow for a meaningful comparison to the available data, the
complete kinematics of the jet have to be taken into account.
The traditional methods failed to apply in this case so far. The
reasons are twofold and canbe tracedback to the factorization
structure of the resummed cross section and the specific
properties of the Mellin transformation. Instead, only fixed-
order (FO) expansions of the threshold resummed cross
section are currently available in the literature [15,22,23].
Note that these problems do not necessarily occur for
observables with identified final state hadrons [24–27].
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In this work, we present for the first time the results for
the threshold and small-R jointly resummed inclusive jet
cross section in proton-proton collisions. The shortcomings
of the traditional approaches to threshold resummation are
overcome by making use of techniques developed in the
context of soft collinear effective theory (SCET) [28–32],
which allows for the resummation to be carried out directly
in momentum space [33]. Since there are no numerical
results available for the threshold resummed inclusive jet
cross section using traditional methods, it is here, where the
SCET approach exhibits its full potential. In addition, our
framework allows for a systematic extension to next-to-
next-to-leading-logarithmic (NNLL) accuracy or beyond
for the resummation of both threshold and the small-R
logarithms, which we briefly discuss below and address in
detail in a future publication.
Theoretical framework.—The double differential cross

section for the process pp → jetþ X can be written as

p2
Td

2σ

dp2
Tdη

¼
X
i1i2

Z
Vð1−WÞ

0

dz
Z

1−ð1−VÞ=ð1−zÞ

VW=ð1−zÞ

×dvx21fi1ðx1Þx22fi2ðx2Þ
d2σ̂i1i2
dvdz

ðv;z;pT;RÞ; ð1Þ

where pT and η are the transverse momentum and rapidity
of the signal jet, respectively, and we have V ¼ 1 − pTe−η=ffiffiffi
S

p
, VW ¼ pTeη=

ffiffiffi
S

p
and the hadronic c.m. energy is

denoted by
ffiffiffi
S

p
. The sum runs over all partonic channels

initiating the process whose cross sections are given by
σ̂i1i2 . Besides depending on pT , the partonic cross sections
σ̂i1i2 are functions of the partonic kinematic variables
s ¼ x1x2S, v ¼ u=ðuþ tÞ and z. Here we have introduced
t ¼ ðp1 − p3Þ2 and u ¼ ðp2 − p3Þ2, where p1;2 are
the momenta of the two incoming partons and p3 is
the momentum of the parton initiating the signal jet. The
PDFs are denoted by fi evaluated at the momentum
fractions x1 ¼ VW=v=ð1 − zÞ and x2 ¼ ð1 − VÞ=ð1 − vÞ=
ð1 − zÞ.
In the small-R and z → 0 threshold limit, the partonic

cross sections can be further factorized as
d2σ̂i1i2
dvdz

¼ s
Z

dsXdscdsGδðzs− sX − sG − scÞ

×Tr½Hi1i2ðv;pT;μh;μÞSGðsG;μsG;μÞ�JXðsX;μX;μÞ
×
X
m

Tr½JmðpTR;μJ;μÞ⊗Ω Sc;mðscR;μsc;μÞ�;

ð2Þ
where the traces are taken in color space. The sum runs over
all collinear splittings and “⊗Ω” denotes the associated
angular integrals [34]. Here, we have assumed that the jet is
constructed using the anti-kT algorithm [35], z ∼ R, and we
allow for a finite mass of the signal jet. The factorization
formula is establishedwithin the framework of SCET,where
Hi1i2 are the hard functions for 2 → 2 scattering, which are

known to 2-loops [36]. The inclusive jet function JXðsXÞ
depends on the invariant mass sX of the recoiling collimated
radiation, and it is also known to orderα2s [37,38]. Theglobal
soft function SG takes into account wide-angle soft radiation
which cannot resolve the small jet radius R. At NLO, the
bare global soft function SG is found to be

Sð1Þ
G ¼ αs

πϵ

eϵγE

Γð1 − ϵÞ
X
i≠j≠4

Ti · Tj
nij
μsG

�
sGnij
μsG

�
−1−2ϵ

; ð3Þ

with nij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sij=si4=sj4

p
and sij ¼ 2pi · pj. After perform-

ing the renormalization in the MS scheme, the NLO global
soft function can be obtained as well as the anomalous
dimension governing its renormalization group (RG) evo-
lution. The signal-jet function JðpTRÞ and the soft-collinear
(“coft”) function ScðscRÞ [34,39] account for the energetic
radiation inside the jet and the soft radiation near the jet
boundary, respectively. Because of the fact that the soft-
collinear radiation can resolve the splitting details of the
collinear radiation inside the signal jet, one has to perform an
infinite sum over the collinear splitting history inside the jet
and keep the angular correlations between the jet and soft-
collinear radiation which account for the nonglobal loga-
rithms (NGLs) [40], as addressed in Refs. [34,41–43]. We
note that the signal-jet and the soft-collinear functions can be
viewed as the threshold limit of the semi-inclusive jet
function [10,13]. If we ignore the NGLs, which usually
show their major effects in the deep-resummation region
[13,44] and have a relatively small phenomenological
impact for more inclusive cross sections [13,44,45], the
infinite sum and the angular correlation structure can be
approximated by a product of the jet and soft-collinear
functions. The NLO jet function can be extracted from
Ref. [45] and for the NLO bare soft-collinear function, we
find (see also Ref. [13])

Sð1Þc ¼ T2
3

αs
πϵ

eϵγE

Γð1 − ϵÞ
pTR
sμsc

�
scpTR
sμsc

�
−1−2ϵ

; ð4Þ

from which the renormalized soft-collinear function and its
anomalous dimension can be readily obtained.
In order to evaluate the cross section in Eq. (2), all

functions are evolved from their natural scales μi to the
scale μ according to their RG equations, which leads to the
resummation of the large logarithms. Here, we do not
elaborate on the solution of the various RG equations as this
has been studied extensively in the literature; see, for
instance, Ref. [33]. With all currently available ingredients,
Eq. (2) allows us to achieve the NLL resummation for
hadronic single-inclusive jet production. In order to go
beyond NLL accuracy, the relevant anomalous dimensions
need to be extracted from explicit 2-loop calculations
which are in principle within reach. The 2-loop hard and
inclusive jet functions are both known and the 2-loop
global soft and the soft-collinear functions can be obtained
following Ref. [46] and Refs. [47,48]. The angular
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correlation between the jet and soft-collinear function
arises from integrating over the single soft limit of the
1 → 3 splitting functions [34] with appropriate phase
space restrictions. The 2-loop signal jet function can be
calculated at least numerically following the strategies of
Refs. [48,49]. Alternatively, the anomalous dimensions,
hence, all lnR terms of the signal jet function, can be
extracted at 2-loop using consistency relations. The remain-
ing constant terms of the signal jet function can be
determined numerically using EVENT2 [50]. Here we are
utilizing the fact that the same jet function will appear for
jet production at threshold in eþe− annihilation where a
similar joint resummation formalism applies.
Phenomenology.—To proceed, we first validate the

factorization formalism by comparing the predictions of
Eq. (2) expanded to NLO, denoted by NLOsin in the
following, with the full NLO QCD calculation in the
threshold region. Since Eq. (2) is derived in the strict
threshold limit, the scale choice related to the jet pT can
only be the leading-jet transverse momentum pmax

T , since
no jets in the event can be harder than the signal jet in this
limit. Therefore, when comparing the two results, we
choose the renormalization and factorization scales as μ ¼
μF ¼ μR ¼ pmax

T for the full NLO QCD calculation instead
of using the so-called individual jet pT which probes a
softer scale than pmax

T . We use the MMHT2014nlo PDF set
of Ref. [51] and focus on

ffiffiffi
S

p ¼ 13 TeV. To enforce the
threshold limit, we demand that pT > 700 GeV and
1.5 < jηj < 2. Figure 1 displays the ratios KR of the
NLOsin result to the full NLO QCD calculation [52] for
R ¼ 0.2, 0.4, and 0.6. We find very good agreement

between these two calculations for all choices of R which
validates our factorization theorem.
We further separate the NLOsin result into a “virtual”

δðzÞ term and the logarithmic terms ½lnkðzÞ=z�þ with k ¼ 0,
1. We observe that the virtual term gives a large positive
correction. The net logarithmic contribution decreases the
cross section, where the ½lnðzÞ=z�þ term is positive,
whereas the ð1=zÞþ term is negative and large due to its
coefficient in the kinematic regime under study.
Now we turn to the phenomenology at the LHC. We

match the NLL resummed results with the full NLO
calculation using

dσ ¼ dσNLL − dσNLOsin
þ dσNLO; ð5Þ

and we set μ ¼ pmax
T for the reasons discussed above. We

make the central scale choices μh ¼ pT and μJ ¼ pTR for
the hard and the signal-jet functions, respectively. The naive
scale for the recoiling jet function is of order μX ∼
κ

ffiffiffi
s

p ½1 − ð2pT=
ffiffiffi
S

p Þ�with κ ∼ 1. However, due to the steeply
falling shape of the luminosity function, κ can deviate from 1
and approach a smaller value. We determine κ dynamically
following Ref. [53] and we set μX ¼ κ × 2pT ½1 − ð2pT=ffiffiffi
S

p Þ�, with κ ¼ 1=2. The other scales are determined in the
seesaw way: μsG ¼ μ2X=μh and μsc ¼ μJ × μsG=μh. Our
uncertainty estimates are obtained by varying μ, μh, and
μJ independently while keeping the seesaw relations for μX,
μsG, and μsc. For all scales we consider variations by a factor
of 2 around their central values and the final scale uncer-
tainty is obtained by taking the envelope.
We first present the results for the single-inclusive jet

cross sections at
ffiffiffi
S

p ¼ 2.76 TeV, which was measured by
the CMS Collaboration for different jet radii [3]. In Fig. 2,
we show the resummed calculations using the CT10nlo
PDFs [54] for jηj < 2 along with the experimental data both
normalized to the full NLO results. The error bars include
both the experimental and the NLO scale uncertainties
added in quadrature as provided in Ref. [3]. The dashed
orange lines represent the PDF uncertainty and the dashed
blue lines show the PDF uncertainty for the ratio σ=σNLO
which is obtained by keeping the correlations. We observe a
significant improvement of the description of the data for all
values R once the joint resummation is taken into account.
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FIG. 1. Ratios KR of the NLOsin result, which is obtained by
expanding Eq. (2) and the full NLO QCD result for different
values of R as a function of the jet pT , for 1.5 < jηj < 2 atffiffiffi
S

p ¼ 13 TeV. The error bars show the numerical uncertainty.
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FIG. 2. The resummed calculation for inclusive jet production for jηj < 2 at
ffiffiffi
S

p ¼ 2.76 TeV for different values of R and the CMS
data (black dots) of Ref. [3], both normalized to the NLO results.

PRL 119, 212001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

24 NOVEMBER 2017

212001-3



Next, we turn to the single-inclusive jet production atffiffiffi
S

p ¼ 13 TeV. The cross section was measured by ATLAS
with a jet radius of R ¼ 0.4 for various bins of the jet-
rapidity η [6]. For the scale choice μ ¼ pmax

T , the NLO
predictions slightly overshoot the data by about 7% to 10%
using the MMHT2014nlo PDF set for jηj > 1. Never-
theless, the NLO calculation is still within the experimental
errors bars. The NNLO corrections further enhance the
cross section leading to a more significant disagreement
with the data [6]. In Fig. 3, we show the results for the pT
spectrum of our jointly resummed calculation. As an
example, we consider the rapidity region 1.5 < jηj < 2
and we plot the ratio of the NLL improved result to the
NLO prediction. Here the error bars show both the NLO
and PDF uncertainties [6]. We find that the joint resum-
mation decreases the cross section relative to the NLO
result and thus improves the agreement with the data.
A similar trend can be observed when comparing to other
single-inclusive jet analyses [2,4,5]. More detailed and
systematic studies along those lines will be presented
elsewhere [55].
Conclusions.—In this work, we presented for the first

time a joint resummation framework for single-inclusive jet
production in the threshold and small-R limit using SCET.
Because of the small jet-size parameter used in the
experimental analyses and the shape of the steeply falling
luminosity functions, the threshold and the small-R loga-
rithmic terms make up the dominant bulk of the FO
contributions in the kinematic range from moderate to
large jet pT . Therefore, in order to provide reliable
theoretical calculations, these classes of logarithmic cor-
rections have to be resummed to all orders in perturbation
theory. The fact that the full NNLO calculation depends
significantly on the scale choice [6] makes the importance
of including higher-order corrections beyond NNLO even
more evident.
Using our framework, we obtained the resummed results

for single-inclusive jet production at the LHC differential in
both the jet pT and the rapidity η. The scales in our
framework are naturally chosen to minimize the logarith-
mic contributions arising due to the small values of R and z.

Instead, for the FO calculations there are no preferable scale
choices that can avoid the occurrence of the large loga-
rithms, although a lower scale choice may capture part of
the resummation effects, similar to the choice μF ¼ μR ¼
mH=2 in the case of Higgs-boson production in the gluon-
gluon fusion channel [56,57]. We demonstrated the validity
of our framework by finding very good agreement with the
full NLO results for various values of R and cuts on pT
and η. We calculated all the necessary ingredients for
the resummation to NLL accuracy and we presented
phenomenological results for LHC kinematics at c.m.
energies of

ffiffiffi
S

p ¼ 2.76 and 13 TeV. In both cases, we
found improved agreements of the theoretical calculations
with the LHC data after complementing the NLO calcu-
lations with the NLL resummation. We would like to stress
again that the observed improvements are not limited to the
exemplary data sets presented in this Letter. Similar
improvements are observed when comparing with other
experimental analyses [2,4,5] at various machine energies
covering a wide range of jet transverse momentum
and rapidity, which will be presented in a forthcoming
publication [55].
The results presented in this work will have direct

impacts on various aspects of QCD precision studies.
On the phenomenology side, this includes the precise
extraction of PDFs [58] and the QCD strong coupling
constant [59] as well as the improvement of parton shower
Monte Carlo event generators [60]. The joint resummation
for single-inclusive jet production supports ongoing efforts
to include threshold resummation for the hard matrix
elements in PDF fits and demonstrates the stability of
the perturbative expansion. On the theory side, our frame-
work allows for realizing the joint resummation at NNLL
accuracy in a straightforward manner as we have sketched
in the text. Subsequently, this can be matched with the
known NNLO calculations for further improvement of the
precision. The full NNLO threshold expansion also cap-
tures all the leading contributions down to the δðzÞ term.
These can be obtained within our framework and provide a
partial cross check of the NNLO results [7,8], which have
not been checked independently by a second calculation
thus far.
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FIG. 3. The resummed calculation for inclusive jet production
with R ¼ 0.4 at
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p ¼ 13 TeV and the preliminary ATLAS data
(black dots) extracted from Ref. [6], both normalized to the NLO
result.
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