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The decay rate of the electroweak (EW) vacuum is calculated in the framework of the standard model
(SM) of particle physics, using the recent progress in the understanding of the decay rate of metastable
vacuum in gauge theories. We give a manifestly gauge-invariant expression of the decay rate. We also
perform a detailed numerical calculation of the decay rate. With the best-fit values of the SM parameters,
we find that the decay rate of the EW vacuum per unit volume is about 10−554 Gyr−1 Gpc−3; with the
uncertainty in the top mass, the decay rate is estimated as 10−284–10−1371 Gyr−1 Gpc−3.

DOI: 10.1103/PhysRevLett.119.211801

Introduction.—It is highly nontrivial whether the vac-
uum we are living in, which we call the electroweak (EW)
vacuum, is absolutely stable or not. If there exists a vacuum
which has lower energy density than that of the EW
vacuum, which is the case in a large class of particle-
physics models, the EW vacuum decays via the quantum
tunneling effect. If the decay rate is too large, the universe
should have experienced a phase transition before the
present epoch, with which the universe would show
completely different aspects than the present one. From
the particle-physics and cosmology points of view, the
stability of the EW vacuum is of particular interest to have
deep insight into particle-physics models and the nature of
the universe.
Even in the standard model (SM) of particle physics,

which is extremely successful in explaining particle inter-
actions, the EW vacuum may be metastable [1–7]. In
particular, the discovery of the Higgs boson by the LHC
experiments [8,9] shed light on the stability of the EW
vacuum. The observed value of the Higgs mass suggests
that the Higgs quartic coupling becomes negative via the
renormalization group (RG) effects at energy scale much
higher than the EW scale. This fact implies that the Higgs
potential becomes negative and that the EW vacuum is not
absolutely stable if the SM is valid up to a scale much
higher than the EW scale.
The decay rate of the EW vacuum has been estimated in

the past, mostly using the method given in Refs. [10–12].
The decay rate of the metastable vacuum (i.e., false
vacuum) per unit volume, which we call γ, is given in
the following form:

γ ¼ Ae−B; ð1Þ
where B is the action of the so-called bounce, which is the
solution of the four-dimensional (4D) Euclidean equation
of motion, while A takes account of the fluctuation around
the bounce. The bounce action B can be evaluated

relatively easily, while the calculation of the prefactor A
is complicated both conceptually and numerically. In
particular, if the bounce is coupled to gauge fields, which
is the case when considering the decay of the EW vacuum
in the SM, gauge-invariant calculation of A has not have
been performed. In addition, in the calculation of the decay
rate of the EW vacuum, the path integral of the zero mode
in association with the (approximate) classical conformal
invariance was not properly performed. The calculation of γ
in the past could not avoid some or all of these difficulties,
resulting in ambiguities in the final result.
Recently, however, a new formalism has been developed

to calculate γ, which can give a manifestly gauge-invariant
expression ofA [13,14]. By using the method given there, a
more unambiguous calculation of the decay rate of the EW
vacuum has become possible.
The main purpose of this Letter is to perform a state-of-

the-art calculation of the decay rate of the EW vacuum in
the framework of the SM, using the recent progress to
calculate the decay rate of metastable vacuum. We give a
gauge-invariant expression of the decay rate of the EW
vacuum.We also give a prescription to properly take care of
the zero mode in association with the (classical) conformal
invariance, which shows up in the limit of large Higgs
amplitude. Then, we perform numerical calculations to
estimate the decay rate, and show that the decay rate for the
size of the present Hubble volume is much smaller than the
inverse of the present age of the Universe.
Higgs potential and the bounce.—In the following, we

consider the situation where the Higgs potential becomes
negative due to the RG running of the quartic coupling of
the Higgs potential. The instability of the potential occurs
when the Higgs amplitude becomes much larger than the
EW scale; in the rest of this letter, we concentrate on such a
large Higgs amplitude. Then, denoting the Higgs doublet as
Φ, the Higgs potential is well approximated by the quartic
one [1]:

PRL 119, 211801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

24 NOVEMBER 2017

0031-9007=17=119(21)=211801(5) 211801-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.211801
https://doi.org/10.1103/PhysRevLett.119.211801
https://doi.org/10.1103/PhysRevLett.119.211801
https://doi.org/10.1103/PhysRevLett.119.211801


VðΦÞ ¼ λðΦ†ΦÞ2: ð2Þ

When the renormalization scale is relatively large, λ < 0 is
realized.
For the study of the decay of the false vacuum, we first

consider the bounce, which corresponds to the classical
path connecting the false and true vacua. In the present
case, by using SU(2) and U(1) transformations, we can take
the following bounce configuration:

Φjbounce ¼
1ffiffiffi
2

p
�

0

ϕ̄ðrÞ

�
; ð3Þ

with vanishing gauge fields. Here, ϕ̄ is a real function of r
(with r being the 4D radius in the Euclidean space) which
obeys

∂2
rϕ̄þ 3

r
∂rϕ̄ − λϕ̄3 ¼ 0; ð4Þ

with

∂rϕ̄ðr ¼ 0Þ ¼ 0; ϕ̄ðr ¼ ∞Þ ¼ 0: ð5Þ

Assuming that λ < 0, the solution of the above equation is
given by

ϕ̄ ¼ ϕ̄C

�
1þ jλj

8
ϕ̄2
Cr

2

�
−1
; ð6Þ

where ϕ̄C is a constant which corresponds to the bounce
amplitude at the center of the bounce configuration. Notice
that the bounce contains a free parameter ϕ̄C. The bounce
action is given by

B ¼ 8π2

3jλj : ð7Þ

Decay rate.—Now we are at the position to calculate the
decay rate of the EW vacuum. As we have shown, we
already have the analytic expression of the bounce action B.
On the other hand, the calculation of the prefactor A is
highly nontrivial. The prefactor A is obtained by calculat-
ing the functional determinants of the fluctuation operators
of the fields that couple to the bounce field [11].
First, let us consider the (physical) Higgs field h, which

is embedded into the Higgs doublet as

Φ ¼ 1ffiffiffi
2

p
�

φ1 þ iφ2

ϕ̄ðrÞ þ hþ iφ3

�
; ð8Þ

where φa are Nambu-Goldstone (NG) modes. After the
decomposition with respect to the 4D angular momentum,
the fluctuation operator of h is given by

MðhÞ
J ¼ −ΔJ − 3jλjϕ̄2; ð9Þ

where J characterizes the eigenvalues of 4D angular-
momentum operators, and it takes J ¼ 0; 1

2
; 1;…, with

which DetMðhÞ ¼ Q
J½DetMðhÞ

J �ð2Jþ1Þ2 . In addition,

ΔJ ≡ ∂2
r þ

3

r
∂r −

4JðJ þ 1Þ
r2

: ð10Þ

The ratio of the functional determinants of the fluc-
tuation operators relevant for the calculation of A can be
performed with the method given in Refs. [12,15–17]. For
the calculation, we first limit the region as 0 ≤ r ≤ r∞,
where r∞ is a (large) radius which is taken to be infinity at
the end of calculation, and impose relevant boundary
conditions for the mode functions at r ¼ 0 and r ¼ r∞.
By using analytic properties of the functional determinants,
we obtain

DetMðhÞ
J

DetcMðhÞ
J

¼ fðhÞJ ðr∞Þ
r2J∞

; ð11Þ

where cMðhÞ
J ¼ ½MðhÞ

J �ϕ̄→0 is the fluctuation operator

around the false vacuum, and fðhÞJ obeys

MðhÞ
J fðhÞJ ¼ 0; ð12Þ

with the boundary condition fðhÞJ ðr → 0Þ≃ r2J.
For J ≥ 1, the functional determinants necessary for the

calculation of A are obtained by using Eq. (11). On the
contrary, for J ¼ 0 and J ¼ 1

2
, special care is needed

because of the existence of zero modes; A diverges if
one naively uses Eq. (11) for those cases.
The zero mode for J ¼ 0 is related to the conformal

invariance; in the present analysis, we approximate that the
Higgs potential is quartic, and, hence, the theory has a
conformal invariance at the classical level. Consequently,
the bounce configuration is not uniquely determined and its
continuous deformation with respect to the parameter ϕ̄C is
possible. This is easily understood from the expression of
the mode function of the conformal zero mode, which is
given by

ψ ðconfÞ ≡N conf

�
1 −

jλj
8
ϕ̄2
Cr

2

��
1þ jλj

8
ϕ̄2
Cr

2

�
−2

¼ N conf
∂ϕ̄
∂ϕ̄C

; ð13Þ

where N conf is the normalization factor. Indeed, one can

see thatMðhÞ
0 ψ ðconfÞ ¼ 0. The normalization factor is given

by
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N −2
conf ¼

1

2π

Z
d4r

� ∂ϕ̄
∂ϕ̄C

�
2

≃ 64π

jλj2ϕ̄4
C

ln r∞: ð14Þ

We comment here that N −2
conf diverges when r∞ is taken to

infinity. As we will see below, however, N conf disappears
from the final expression by properly taking into account
the measure of the path integral of the conformal
zero mode.
Because the zero-mode wave function in association

with the conformal invariance is given by the derivative of
ϕ̄with respect to ϕ̄C, the path integral of the conformal zero
mode should be regarded as the integration over all the
possible deformation of the bounce configuration with the
change of ϕ̄C:

Z
DhðconfÞ →

Z
dϕ̄C

N conf
: ð15Þ

Then, remembering that the functional determinants origi-
nate from the path integral of the fields coupled to the

bounce, the functional determinant of MðhÞ
0 should be

understood as

½DetMðhÞ
0 �−1=2 →

Z
dϕ̄C

N conf
½Det0MðhÞ

0 �−1=2; ð16Þ

where the prime indicates that the zero eigenvalue is
omitted from the functional determinant. In order to omit
the zero eigenvalue, we use the following technique [14]:

Det0MðhÞ
0

DetM̂ðhÞ
0

¼ lim
ν→0

ν−1
DetðMðhÞ

0 þ νÞ
DetM̂ðhÞ

0

¼ f̌ðhÞ0 ðr∞Þ; ð17Þ

where the function f̌ðhÞ0 satisfies

�
∂2
r þ

3

r
∂r þ 3jλjϕ̄2

�
f̌ðhÞ0 ¼ ∂ϕ̄

∂ϕ̄C
; ð18Þ

and f̌ðhÞ0 ðr → 0Þ ¼ 0, resulting in

f̌ðhÞ0 ðr∞Þ ¼
Z

r∞

0

dr1r−31

Z
r1

0

dr2r32
∂ϕ̄
∂ϕ̄C

≃ −
4

jλjϕ̄2
C

ln r∞:

ð19Þ

Consequently,

����DetM
ðhÞ
0

DetM̂ðhÞ
0

����
−1=2

→
Z

dϕ̄C

ϕ̄C

�
16π

jλj
�

1=2
: ð20Þ

The zero modes for J ¼ 1
2
are related to the translational

invariance; they can be taken care of as [11]

DetMðhÞ
1=2

DetcMðhÞ
1=2

→ V−1=2
4D

�
B
2π

�
−1 f̌ðhÞ1=2ðr∞Þ

r∞
; ð21Þ

where V4D is the volume of the 4D Euclidean space, and the

function f̌ðhÞ1=2 obeys

MðhÞ
1=2f̌

ðhÞ
1=2 ¼ −r

�
1þ jλj

8
ϕ̄2
Cr

2

�
−2
; ð22Þ

with f̌ðhÞ1=2ðr → 0Þ ¼ 0. Notice that f̌ðhÞ1=2ðr∞Þ ∝ ϕ̄−2
C .

For the effects of the gauge and NG bosons, a new
technique has been recently developed in Refs. [13,14],
which gives a simple and manifestly gauge-invariant
formula for the gauge- and NG-boson contributions. In
Refs. [13,14], the scalar potential was assumed to be
quadratic around the false vacuum, while it is quartic in
the present case. Based on Ref. [14], we derive the formula
relevant for the present case. [The result is given in
Eq. (25); a more detailed derivation of the following
formulas will be given elsewhere [18].]
Combining the contributions of particles which have

sizable couplings with the bounce, the decay rate of the EW
vacuum is expressed as

γ ¼
Z

d ln ϕ̄C½IðHÞIðW;Z;NGÞIðtÞe−δSM̄Se−B�μðϕ̄CÞ; ð23Þ

where δSM̄S is the effect of the so-called divergent part [14]
(which is calculated with the M̄S scheme), and μ is the
renormalization scale at which the SM coupling constants
for the calculation of the integrand are evaluated. The Higgs
contribution as well as the gauge- and NG-boson contri-
bution are given by

IðHÞ ¼ B2

4π2

�
16π

jλj
�

1=2
�f̌ðhÞ1=2ðr∞Þ

r∞

�−2

× es
ðhÞ
0

þsðhÞ
1=2

Y
J≥1

es
ðhÞ
J

�
fðhÞJ ðr∞Þ

r2J∞

�−ð2Jþ1Þ2=2
; ð24Þ

IðW;Z;NGÞ ¼VSUð2Þ

�
16π

jλj
�

3=2 Y
V¼W1;W2;Z

es
ðV;NGÞ
0

Y
J≥1=2

es
ðV;NGÞ
J

×

�jλjJϕ̄2
Cf

ðηV Þ
J ðr∞Þ

8ðJþ1Þr2J−2∞

�−ð2Jþ1Þ2=2�
fðT

VÞ
J ðr∞Þ
r2J∞

�−ð2Jþ1Þ2

;

ð25Þ

where VSUð2Þ ¼ 2π2 is the volume of the SU(2) group
parametrizing the possible deformation of the bounce

configuration. Here, sðhÞJ and sðV;NGÞJ are the effects of
counterterms to subtract divergences; the calculations of
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these quantities are found in Refs. [1,14]. The functions

fðη
V Þ

J and fðT
VÞ

J satisfy

ðΔJ − g2Vϕ̄
2ÞfðηV ÞJ −

2ϕ̄0

r2ϕ̄
∂rðr2fðη

VÞ
J Þ ¼ 0; ð26Þ

ðΔJ − g2Vϕ̄
2ÞfðTV Þ

J ¼ 0; ð27Þ

and fðη
VÞ

J ðr → 0Þ≃ fðT
VÞ

J ðr → 0Þ≃ r2J, where

gV ¼ 1

2

(
g2; V ¼ W1;W2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 þ g21

p
; V ¼ Z

ð28Þ

with g2 and g1 being the gauge coupling constants of
SUð2ÞL and Uð1ÞY , respectively. Expression of the top
contribution IðtÞ can be found in Ref. [1]. We emphasize
that the above expressions for the decay rate is manifestly
gauge invariant; they hold irrespective of the choice of the
gauge parameter (which is often called ξ). Furthermore,
δSM̄S is given by the sum of the Higgs and top contribu-
tions as well as the gauge and NG contributions:

δSM̄S ¼ δSðhÞ
M̄S

þ δSðtÞ
M̄S

þP
V¼W1;W2;ZδS

ðV;NGÞ
M̄S

. The Higgs

and top contributions are given in Ref. [1], while δSðV;NGÞ
M̄S

is
obtained with the prescription given in Ref. [14]:

δSðV;NGÞ
M̄S

¼ −
�
1

3
þ 2g2V

jλj þ g4V
jλj2

�

×

�
5

6
þ γE þ ln

� ffiffiffiffiffi
2

jλj

s
μ

ϕ̄C

��
−
2g2V
3jλj ; ð29Þ

with γE being Euler’s constant.
In Eq. (23), the renormalization scale μ is taken to be ϕ̄C

dependent in the following reason. For fixed ϕ̄C, the typical
mass scale of the fields which have sizable couplings to the
bounce is Oðϕ̄CÞ, and only the scales in the calculation are
ϕ̄C and μ. Thus, one-loop effects give terms proportional to
lnðϕ̄C=μÞ to the integrand; the μ dependence from such
terms should be canceled by the μ dependence of the
coupling constants [19]. The two- and higher-loop effects
are expected to introduce terms proportional to lnpðϕ̄C=μÞ
(with p ≥ 1) which are, on the contrary, not included in the
present result. In order to minimize the higher order effects,
we set μðϕ̄CÞ ∼ ϕ̄C; hereafter, we take μðϕ̄CÞ ¼ ϕ̄C unless
otherwise stated. In fact, a proper choice of μ is important
for the convergence of the integral over ln ϕ̄C. In the SM, λ
is minimized at μ ∼Oð1017Þ GeV, and it increases above
such a scale. (The runnings of the SM coupling constants
are precisely included in our numerical calculation; see the
discussion below.) Then, with taking μ ¼ ϕ̄C, because B is
inversely proportional to jλj, the integrand of Eq. (23) is
maximized when ϕ̄C ∼Oð1018Þ GeV and is significantly

suppressed when ϕ̄C ≫ Oð1018Þ GeV. Based on this
observation, we expect that the integration over ϕ̄C
converges.
Numerical results.—Now we apply our formula for the

estimation of the decay rate of the EW vacuum. We

evaluate fðhÞJ , f̌ðhÞ1=2, fðη
V Þ

J , and fðT
VÞ

J (as well as other

functions necessary to calculate IðtÞ and counterterms)
by numerically solving differential equations. The renorm-
alization-scale dependence of the SM coupling constants
are evaluated by using the method given in Ref. [20], which
partially takes into account three- and four-loop effects.
Then, with performing the integration over ln ϕ̄C numeri-
cally, the decay rate of the EW vacuum is obtained. We use
the following Higgs and top masses [21]:

mH ¼ 125.09� 0.24 GeV; ð30Þ

mðpoleÞ
t ¼ 173.1� 1.1 GeV; ð31Þ

while the strong coupling constant is

αsðmZÞ ¼ 0.1181� 0.0011: ð32Þ

For the best-fit values of the Higgs mass, top mass, and
strong coupling constant given above, we find
γ ≃ 10−718 GeV4 ≃ 10−554 Gyr−1Gpc−3. Taking account
of the uncertainties, we obtain

log10½γðGyr−1Gpc−3Þ�≃ −554þ38þ270þ137
−41−817−204 ; ð33Þ

where the first, second, and third errors are due to those in
the Higgs mass, top mass, and the strong coupling constant
given in Eqs. (30), (31), and (32), respectively. Thus, the
decay rate is extremely sensitive to the top mass. So far, we
have chosen the renormalization scale to be μðϕ̄CÞ ¼ ϕ̄C.
Varying the renormalization scale from μðϕ̄CÞ ¼ 1

2
ϕ̄C to

2ϕ̄C, for example, the change of the decay rate is
δ log10 γ ∼ 6. In Fig. 1, we show the contours of constant
γ on Higgs mass vs top mass plane.
Comparing the decay rate with H−4

0 ∼ 103 Gyr Gpc3

(with H0 being the Hubble constant), the probability of
having a phase transition within the present Hubble volume
for the present cosmic time scale is enormously small for
the best-fit values of the SM parameters. [Even if we vary

mH, m
ðpoleÞ
t , and αsðmZÞ within 2σ uncertainties, γ is at

most 10−68 Gyr−1 Gpc−3 which is still much smaller than
H4

0.] If the top mass were much larger than the observed
value, γ would be larger than ∼H4

0 so that the EW vacuum
would decay before the present epoch; such an instability
bound derived from our formula is consistent with that
given in previous work [2]. In the future, the universe will
be dominated by the dark energy, assuming that it is a
cosmological constant. Using the observed energy density
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of the dark energy, the expansion rate will eventually
become H∞ ≃ 56.3 km= sec Mpc [22]. Then, the phase
transition rate within the horizon scale of such a de Sitter
universe is about 10−552 Gyr−1 ≃ 10−551H∞, which we
regard as the decay rate of the EW vacuum. Uncertainty in
this estimation can be obtained from Eq. (33).
Summary.—We have calculated the decay rate of the EW

vacuum, assuming that the SM is valid up to high energy
scale. We have derived a gauge-invariant expression of the
decay rate, properly performing the path integral of the zero
mode in association with the conformal invariance. With
the best-fit values of the Higgs and top masses and αsðmZÞ,
the decay rate of the EW vacuum per unit volume is given
by 10−554 Gyr−1Gpc−3. The probability of the phase
transition within the present horizon scale is found to be
enormously small. This is a good news for us all because
we can safely live in the EW vacuum unless a new physics
beyond the SM significantly alters this conclusion.

This work was supported by the Grant-in-Aid for
Scientific Research C (No. 26400239), and Innovative
Areas (No. 16H06490). The work of S. C. was also
supported in part by the Program for Leading Graduate
Schools, MEXT, Japan.

Note added.—Recently, Ref. [23] appeared, which has
significant overlap with our work. We found, however,
several disagreements between the results in Ref. [23] and
ours, which are in (i) the counterterms based on the

angular-momentum decomposition (corresponding to

sðV;NGÞJ in our calculation), (ii) δSðV;NGÞ
M̄S

, and (iii) the volume
of the SU(2) group. Because of these, log10 γ based on
Ref. [23] becomes larger than ours by ∼65. In addition, the
method of the path integral over the conformal mode and
the choice of the renormalization scale are different; they
result in the shift of log10 γ by ∼ − 33, which should be
regarded as a theoretical uncertainty.
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