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We explain how asymptotic safety arises in four-dimensional supersymmetric gauge theories. We
provide asymptotically safe supersymmetric gauge theories together with their superconformal fixed
points, R charges, phase diagrams, and UV-IR connecting trajectories. Strict perturbative control is
achieved in a Veneziano limit. Consistency with unitarity and the a theorem is established. We find that
supersymmetry enhances the predictivity of asymptotically safe theories.
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Introduction.—The discovery of asymptotic freedom for
non-Abelian gauge theories in 1973 has initiated a new era
in particle physics [1,2]. Asymptotic freedom explains why
certain types of quantum field theories such as the strong
and weak sector of the standard model can be truly
fundamental and predictive up to the highest energies. It
implies that interactions are switched off asymptotically
and theories become free. Asymptotic freedom constitutes
a cornerstone in the standard model of particle physics
and continues to play an important role in the search for
models beyond.
The discovery of exact asymptotic safety for non-

Abelian gauge theories with matter [3–5] has raised
substantial interest. Asymptotic safety explains how theo-
ries can be fundamental, predictive, and interacting at
highest energies [6]. Initially put forward as a scenario to
quantize gravity [7–10], asymptotic safety also arises in
many other theories [11–14]. In particle physics, asymp-
totic safety offers intriguing new directions to ultraviolet
(UV) complete the standard model beyond the confines of
asymptotic freedom [15–17].
In this Letter, we investigate whether asymptotic safety

can be achieved in supersymmetric gauge theories. In the
language of the renormalization group (RG), asymptotic
safety corresponds to an interacting UV fixed point for the
running couplings [6]. Supersymmetry modifies fixed
points and the evolution of couplings, because it links
bosonic with fermionic degrees of freedom [4,18,19].
Additional constraints arise as bounds on the superconfor-
mal R charges [20] from both unitarity [21] and the a
theorem [22–25]. Hence, our task consists of finding
supersymmetric gauge theories without asymptotic free-
dom, but with viable interacting UV fixed points, and in
accord with all constraints.
One arena in which we may hope to find reliable answers

is that of perturbation theory. For sufficiently small cou-
plings [26], the loop expansion and weakly interacting
fixed points are trustworthy [4]. In this spirit, we obtain
fixed points, phase diagrams, superconformal R charges,
and UV-IR connecting trajectories for supersymmetric
gauge theories in a controlled setting. Previously, this

philosophy has been used successfully for proofs of
asymptotic safety in nonsupersymmetric simple [3] and
semisimple [5] gauge theories.
The model.—We consider a family of massless super-

symmetric Yang-Mills theories in four space-time dimen-
sions with product gauge group SUðN1Þ ⊗ SUðN2Þ,
coupled to chiral superfields (ψ , χ, Ψ, Q) with flavor
multiplicities (NF, NF, 1, NQ). The main novelty is the use
of a semisimple gauge group, as otherwise asymptotic
safety cannot arise at weak coupling [4,18]. For each
superfield, we introduce a left- and right-handed copy with
gauge charges as in Table I to ensure the absence of gauge
anomalies. Also, viable models with asymptotic safety
must have Yukawa couplings [4]. Therefore, we allow for
superpotentials of the form

W ¼ yTr½ψLΨLχL þ ψRΨRχR�; ð1Þ

where the trace sums over flavor and gauge indices. The
superfields Q are not furnished with Yukawa inter-
actions. The theory has a global SUðNFÞL ⊗ SUðNFÞR ⊗
SUðNQÞL ⊗ SUðNQÞR flavor and a Uð1ÞR symmetry.
Moreover, the theory is renormalizable in perturbation
theory and characterized by two gauge couplings g1 and
g2 and the Yukawa coupling y, which we write as

α1 ¼
N1g21
ð4πÞ2 ; α2 ¼

N2g22
ð4πÞ2 ; αy ¼

N1y2

ð4πÞ2 : ð2Þ

Sending field multiplicities (N1, N2, NF, NQ) to infinity
while keeping their ratios fixed reduces the number of free
parameters down to three, which we choose to be

TABLE I. Chiral superfields and their gauge charges.

Chiral superfields ψL ψR ΨL ΨR χL χR QL QR

SUðN1Þ □̄ □ □ □̄ 1 1 1 1
SUðN2Þ 1 1 □ □̄ □̄ □ □̄ □
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R ¼ N2

N1

; P ¼ N1

N2

NQ þ N1 þ NF − 3N2

NF þ N2 − 3N1

;

ϵ ¼ NF þ N2 − 3N1

N1

ð3Þ

In the large-N limit [26], the model parameters (R, P, ϵ) are
continuous. We can always arrange to find (3) with

1 < R < 3; P ¼ finite; 0 < jϵj ≪ 1: ð4Þ

The smallness of ϵ ensures perturbative control in both
gauge sectors [4,5], which is the regime of interest for the
rest of this work (the general case is discussed elsewhere
[27]). This completes the definition of our models.
Superconformal fixed points.—The running of couplings

is controlled by the beta functions βi ¼ dαi=d ln μ, with μ
denoting the RG momentum scale. To find accurate fixed
points, we must minimally retain terms up to two loops in
the gauge and one loop in the Yukawa beta functions [4].
Using the results of Refs. [28,29] and suppressing sub-
leading terms in ϵ, we find

β1 ¼ 2α21½ϵþ 6α1 þ 2Rα2 − 4Rð3 − RÞαy�;

β2 ¼ 2α22½Pϵþ 6α2 þ
2

R
α1 −

4

R
ð3 − RÞαy�;

βy ¼ 4αy½2αy − α1 − α2�: ð5Þ

Anomalous dimensions of the superfields are given by

γΨ ¼ ð3 − RÞαy − α1 − α2;

γψ ¼ Rαy − α1;

γχ ¼ αy − α2;

γQ ¼ −α2: ð6Þ

up to corrections of the order of Oðϵα; α2Þ. The simulta-
neous vanishing of (5) implies fixed points and scale
invariance. Besides the free Gaussian (G), the model has
weakly coupled fixed points α� of order ϵ. These are either
of the Banks-Zaks (BZ) or gauge-Yukawa (GY) type,
depending on whether the Yukawa coupling is free or
interacting [4]. We find partially interacting Banks-Zaks
(BZ1;BZ2) and gauge-Yukawa (GY1, GY2) fixed points
and fully interacting ones (BZ12, GY12), all summarized in
Table II. Results are exact to the leading order in ϵ, with
higher loop orders only correcting subleading terms. We
also note that (5), (6), and fixed points are universal and RG
scheme independent at weak coupling [3,4].
At superconformal fixed points, our models display a

global and anomaly-free Uð1ÞR symmetry. In terms of the
superfield anomalous dimensions (6), the R charges (not to
be confused with the parameter R) read

Ri ¼ 2ð1þ γ�i Þ=3: ð7Þ

Nonperturbative expressions for the R charges are found
using the method of a maximization [20]. For small
couplings, findings agree with (6) and (7) and deviate
mildly from Gaussian values, in accord with unitarity [21].
Asymptotic freedom of (5) is guaranteed for P > 0 > ϵ.

Then, all three couplings (2) are marginally relevant at the
Gaussian UV fixed point. The set of asymptotically free
trajectories is characterized by three free parameters, the
initial values 0 < δαiðΛÞ ≪ 1 at the high scale Λ. Some or
all interacting fixed points of Table II arise within specific
parameter ranges (3) and take the role of IR fixed points.
Trajectories either run towards a regime with strong
coupling and confinement or terminate at a superconformal
IR fixed point. By and large, this is very similar to the
generic behavior of asymptotically free nonsupersymmetric
gauge theories [5].
Asymptotic safety.—Next, we turn to regimes (3) where

asymptotic freedom is lost, starting with

P < 0 < ϵ: ð8Þ

Clearly, the Gaussian has ceased to be the UV fixed point
for the full theory, and one might wonder whether its role is
taken over by one of the interacting fixed points in Table II.
Available candidates in the regime (8) are BZ2, GY2, and
GY12. At the partially interacting BZ2, only the Yukawa
term (1) is a relevant perturbation. The theory becomes
interacting in α2 and αy, yet α1 remains switched off at all
scales. From the eigenvalue spectrum, we learn that GY12,
once it exists, is IR attractive in all couplings. Hence,
neither the Gaussian, nor BZ2, nor GY12 qualify as UV
fixed points. A new effect occurs at GY2. While α2 and αy
are irrelevant in its vicinity [4], the relevancy of α1 now
depends on the magnitude of α�2 and α�y at GY2. We find

β1jGY2
¼ −B1;effα

2
1 þOðα31Þ;

B1;eff ¼ −2ϵþ 2ϵP=Q1; ð9Þ

with Q1ðRÞ ¼ ð4R − 3Þ=ðR3 − 2R2Þ. The first term in
B1;eff is the conventional one-loop coefficient. It is negative
in the regime (8) and documents the irrelevancy of α1 at
the Gaussian. The second term is sourced through the
fixed point GY2. Most notably, the sign of B1;eff is positive
provided that

TABLE II. The G and all BZ and GY fixed points to leading
order in ϵ.

Fixed point G BZ1 BZ2 GY1 GY2 BZ12 GY12

α�1 0 − ϵ
6

0 − ϵ
2ð3−3RþR2Þ 0 PR−3

16
ϵ 3−4R−2PR2þPR3

ðR−1Þð9−8Rþ3R2Þ
ϵ
2

α�2 0 0 − Pϵ
6

0 −PR
4R−3

ϵ
2

1−3PR
16R ϵ R−2−3PRþ3PR2−PR3

ðR−1Þð9−8Rþ3R2Þ
ϵ
2

α�y 0 0 0 1
2
α�1

1
2
α�2 0 1

2
ðα�1 þ α�2Þ
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P < Q1 < 0; 1 < R < 2; ϵ > 0; ð10Þ

thereby turning α1 into a relevant coupling. We emphasize
that the Yukawa term (1) is crucial to achieve B1;eff > 0;
without it, the required change of sign would be impossible
[4]. In other words, while α1 is IR free close to the Gaussian
or BZ2 fixed points, it has become UV free close to the GY2

fixed point. It is precisely for this reason that the gauge-
Yukawa fixed point GY2 takes the role of an asymptotically
safe UV fixed point with one marginally relevant and two
irrelevant directions.
The same mechanism is operative once P; ϵ < 0, where

α1 and α2 have interchanged their roles. Near GY1, the
effective one-loop coefficient for α2 reads B2;eff ¼
2ðQ2 − PÞϵ, with Q2 ¼ ðR − 2Þ=ðR3 − 3R2 þ 3RÞ. Con-
sequently, α2 becomes a relevant coupling for

Q2 < P < 0; 1 < R < 2; ϵ < 0; ð11Þ
thereby promoting GY1 to an UV fixed point. As soon as
both gauge sectors are destabilized (P; ϵ > 0), no fixed
point other than the IR attractive Gaussian can arise.
Theories are UV incomplete and must be viewed as
effective. Figure 1 summarizes our results once P < 0,
also indicating the parameter regions (10) and (11) with
exact asymptotic safety.
From the UV to the IR.—At either of the superconformal

UV fixed points, the elementary “quarks” and “gluons” are
unconfined and appear as interacting (free) massless
particles in one (the other) gauge sector. The free gauge
sector acts as a marginally relevant perturbation which

drives the theory away from the UV fixed point. The
corresponding phase diagram in the regime (10) is shown in
Fig. 2. It confirms that GY2, unlike the Gaussian, is the
unique UV fixed point. Close to the UV fixed point, the
critical surface of asymptotically safe trajectories running
out of it is given by

α1ðμÞ ¼
δα1ðΛÞ

1þ B1;effδα1ðΛÞ lnðμ=ΛÞ
;

α2ðμÞ ¼ α�2 þ
2 − R
4R − 3

α1ðμÞ;

αyðμÞ ¼ α�y þ
3R − 1

8R − 6
α1ðμÞ: ð12Þ

We emphasize that the theory has only one free parameter
δα1ðΛÞ ≪ 1 related to the relevant gauge coupling at the
high scale Λ. Both α2 and αy have become irrelevant
couplings and are strictly determined by α1. [Similar
expressions are found for the regime (11).] Dimensional
transmutation leads to the RG invariant mass scale

μtr ¼ Λ exp½−B1;effδα1ðΛÞ�−1; ð13Þ

which is independent of the high scale. It characterizes the
scale where couplings stop being controlled by the UV
fixed point. For RG scales μ ≪ μtr, we observe a crossover
into another superconformal fixed point (GY12) governing
the IR. There, the elementary quarks and gluons of either
gauge sector remain unconfined and appear as interacting
massless particles, different from those observed in the UV.

GY1

GY2

Asymptotic Safety 0
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Effective Theories any

1 3
2

2 5
2
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1
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P

FIG. 1. Phase space for asymptotic safety, showing the param-
eter regions (10) and (11). Models in the gray-shaded area are UV
incomplete. The P axis is scaled as P=ð1 − PÞ for better display.
The full dot indicates the example in Figs. 2 and 3.

G

IR

UV

FIG. 2. Phase diagram with asymptotic safety for supersym-
metry (P ¼ −5, R ¼ ð3=2Þ, ϵ ¼ ð1=1000Þ; Fig. 1) projected onto
αy ¼ ðα1 þ α2Þ=2. Trajectories are pointing towards the IR.
Notice that α1 is destabilized and asymptotic freedom is absent.
Dots show the Gaussian, the UV, and the IR fixed points. Also
shown are separatrices (red) and sample trajectories (gray).
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Figure 3 exemplifies the running of couplings from the UV
to the IR.
The UV fixed point persists in the presence of mass

terms for the chiral superfields. Once masses are switched
on, with or without soft supersymmetry-breaking ones such
as those for the “gluinos,” they lead to decoupling [30] and
low-energy modifications of the RG flow (5). Then, UV
safe trajectories may terminate in regimes with strong
coupling and confinement in the IR, with or without softly
broken supersymmetry.
Asymptotic safety and the a theorem.—We are now in a

position to establish consistency with a more formal aspect
of the renormalization group known as the a theorem
[22–25]. It states that the central charge a ¼ ð3=32Þf2dGþP

ið1 − RiÞ½1 − 3ð1 − RiÞ2�g [24] must be a decreasing
function along RG trajectories in any 4d quantum field
theory (dG denotes the dimension of the gauge groups and i
runs over all chiral superfields). Using (6), (7), and Table II,
we find

Δa≡ aUV − aIR > 0 ð14Þ

on any of the UV-IR connecting trajectories in the parameter
ranges (10) and (11) shown in Fig. 1. Had the IR limit been
the Gaussian, validity of the a theorem implies strong
coupling and large R charges in the UV, at least for some
of the fields [18,24]. In our models, this implication is
circumvented, because the IR is not free. In fact, there is not a
single trajectory flowing from the UV fixed point to the
Gaussian (Fig. 2), which again is in accord with the a
theorem (aUV − aG < 0).

Discussion.—In supersymmetry, and for superpotentials
of the form (1) including mass terms, the scalar potential is
always a sum of squares of absolute values [31]. Hence, the
stability of the quantum vacuum is automatic. Also, a fixed
point for the gauge and Yukawa couplings implies a fixed
point for the scalar potential. Without supersymmetry, the
physicality of scalar fixed points and vacuum stability do not
come by default [4] andmust be checked case by case [5,32].
Also, without supersymmetry, at least one Yukawa

coupling is required to help generate an interacting UV
fixed point [4]. Invariably, this reduces the number of
fundamentally free parameters in the UV by at least one,
thereby enhancing the predictive power [3]. In supersym-
metry, asymptotic safety at weak coupling cannot arise with
only a single gauge factor [4,18]. Then, as we have seen in
(12), at least one of the Yukawa couplings together with at
least one of multiple gauge couplings must be nontrivial in
the UV, thereby reducing the number of free parameters by
two. We conclude that supersymmetry additionally enhan-
ces the predictive power of asymptotic safety.
We have shown that asymptotic safety is operative in

supersymmetric gauge theories. Yukawa couplings con-
tinue to play a distinctive role at weak coupling, as they do
for asymptotic safety without supersymmetry [4]. Explicit
examples with superpotential (1) and matter content as in
Table I are provided, including the phase space (Fig. 1) and
phase diagram (Fig. 2). Results are consistent with unitarity
and the a theorem. Our construction makes it clear that
asymptotic safety exists in supersymmetry beyond the
models discussed here. It is interesting to include more
gauge groups, expand Yukawa sectors, switch on mass
terms, and explore the potential for asymptotically safe
supersymmetric model building.
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