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Topological insulating phases are primarily associated with condensed-matter systems, which typically
feature short-range interactions. Nevertheless, many realizations of quantum matter can exhibit long-range
interactions, and it is still largely unknown the effect that these latter may exert upon the topological phases.
In this Letter, we investigate the Su-Schrieffer-Heeger topological insulator in the presence of long-range
interactions. We show that this model can be readily realized in quantum simulators with trapped ions by
means of a periodic driving. Our results indicate that the localization of the associated edge states is enhanced
by the long-range interactions, and that the localized components survive within the ground state of the
model. These effects could be easily confirmed in current state-of-the-art experimental implementations.
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Introduction.—Topological phases are one of the most
exotic forms of quantum matter. Among their many in-
triguing traits, we find that they are robust against local
decoherence processes, or feature fractional particle excita-
tions with prospective applications in quantum information
processing [1,2]. Some of the simplest systems showcasing
nontrivial topological order are the topological insulators
[3–6], gapped phases of noninteracting fermions which
present gapless edge states. Despite several experimental
realizations [7,8], the preparation and measurement of
topological insulators is typically difficult in the solid state.
Analog quantum simulators [9–15], on the other hand, offer
the possibility of exploring and exploiting the topological
insulating phases, because of their inherent high degree of
controllability. Furthermore, interactions in a quantum sim-
ulator can be tuned at will, opening up the possibility of
investigating new regimes of the underlying models.
Topological edge states usually occur in the insulating

phase as long as an associated bulk invariant attains a
nontrivial value, and the generic symmetries of the under-
lyingHamiltonian are preserved [16]. This property—known
as the bulk-edge correspondence—is a generic feature of
topological insulators. However, if interactions are taken into
account, the presence of edge states is no longer guaranteed.
For instance, it has been shown that one of the edge states
present in the Mott insulating phase of the Bose-Hubbard
model on a 1D superlattice is not stable against tunneling
[17]. In this work, we extend these considerations to the case
of interactions which are explicitly long ranged. Since
topological phases are characteristically robust against local
perturbations, but long-range interactions may not qualify as
such, there is an ongoing effort to elucidate their effect upon
the topological states [18–20]. This question is not of
exclusive theoretical interest, since many experimental
systems implementing topological phases of matter feature
long-range interactions. In particular, we will show that
trapped-ion quantum simulators can realize a long-range
interacting version of one of the simplest instances of a

topological insulator, the Su-Schrieffer-Heeger (SSH)model
[21–23]

HSSH ¼ J
XN−1

j¼1

½1þ δð−1Þj�ðσþj σ−jþ1 þ H:c:Þ: ð1Þ

The SSH model presents topological edges states for δ > 0,
which, e.g., near the left end of the chain are of the form
jE:S:i ∼P

N
j¼1 e

ðN−jþ1Þ=ξlocσþj j↓↓↓…i, where the localiza-
tion length can be related to the dimerization δ through [24]

ξloc ¼ −2= ln
1 − δ

1þ δ
; 0 < δ < 1: ð2Þ

The addition of long-range interion couplings on Eq. (1)
turns this model into a highly nontrivial interacting problem.
However, we will show that, owing to the single-particle
addressability available in trapped-ion setups, the edge states
can be studied as one-body solutions, and that their properties
survive when interactions are taken into account.
This Letter is structured as follows. (i) We begin showing

how to implement the interacting SSH model with trapped-
ion quantum matter. (ii) We then study its one-excitation
subspace, and locate the topological phase. (iii) We perform
an effective description of the low-energy sector, and
establish the dependence of the localization length with
the range of the interactions. Also, we provide a protocol
for the detection of the edge states. (iv) Finally, we study
the correlations in the ground state, and establish the
survival of the boundary modes against interactions.
Realization of the spin SSH Hamiltonian.—Weconsider a

set ofN trapped ions arranged along a 1D chain. Two optical
or hyperfine levels j↑i, j↓i encode an effective spin, such that
j↑ih↑j − j↓ih↓j≡ σz [25]. The vibrations of the chain can
be approximated by a set of harmonic modes, Hph ¼P

N
n¼1 ωna

†
nan. We add a state-dependent force conditional

on the internal states of the ions [26–29], whose frequency is
fairly off-resonant with any motional excitation,
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HfðtÞ ¼ g
XN
j;n¼1

σxjðMj;neiδnta
†
n þ H:c:Þ; ð3Þ

δn ¼ ωn − Δω, where Δω is the laser detuning with respect
to the internal level andMj;n is the phononwave function.We
assume that the force acts in the direction transverse to the ion
chain. In this case the mode n ¼ N=2 has the minimum
energy.After tracing out thevibrational bath, the dynamics of
the spins can be described by an Ising Hamiltonian [11],

HIsing ¼
XN
j;l¼1

JðionsÞj;l σxjσ
x
l þ

Ω
2

XN
j¼1

σzj; ð4Þ

where the extra transversal field Ω can be realized with a
microwave or aRaman transition. The nature of the couplings

JðionsÞj;l depends on the width of the dispersion relation of the
motional modes tC and the detuning of the laser from the
bottom of the band, δN=2 [30]. All through this work we
assume δN=2 > 0. In Ref. [31] we showed that depending on
the relative values of δN=2 and tC, we can distinguish two
regimes: (i) the long-range limit (δN=2 ≪ tC), in which

JðionsÞj;l ∼ e−jj−lj=ξint . The spin coupling takes a Yukawa-like

form, with ξint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2Þ=2p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tC=δN=2
p

, and (ii) short-range
limit (δN=2 ≫ tC), inwhich the couplings decay as∼jj − lj−3,
and the interactions are effectively among nearest neigh-
bors only.
Since σxj ¼ σþj þ σ−j , Hamiltonian (4) contains terms of

the form σþj σ
þ
l , σ

−
j σ

−
l , which do not occur in Eq. (1). To

eliminate these we assume a rotating wave approximation
in the limit Ω ≫ Jj;l. To obtain the SSH model we consider
driving the chain with a time-dependent field. Periodic
drivings are known to render effective Hamiltonians in
which specific terms can be adiabatically eliminated, and
the interactions are nontrivially dressed [32]. In our case,
this dressing must also contain some spatial structure to
give rise to the periodicity of the couplings in the SSH
model. We exploit the possibility of globally imprinting
inhomogeneous couplings upon the chain, by taking
advantage of the optical phase of the laser fields [31],

Hdriving ¼
ηωd

2
cosðωdtÞ

XN
j¼1

cosðΔkd0jþ ϕÞσzj: ð5Þ

This driving relies on a standing wave modulated in time
with frequency ωd ≪ Ω, which should be implemented by a
different set of lasers than the state-dependent force in
Eq. (3). η is the (dimensionless) coupling strength, Δk is
thewave vector along the chain axis, andϕ is a global optical
shift. We assume that the ions are equally spaced by d0, so

their equilibrium positions are rð0Þj ¼ d0j. This is a good
approximation in the center of a Coulomb crystal in a rf trap
[33], or describes a linear array of microtraps [34–36].

Now we move into a rotating frame such that HIsingþ
Hdriving ≡Htotal → H0

total, with H0
total ¼ UðtÞHtotalU†ðtÞ−

iUðtÞðd=dtÞU†ðtÞ, UðtÞ ¼ exp ½iPN
j¼1 ΔjðtÞσzj�, and

ΔjðtÞ ¼
Ω
2
tþ ηωd

2
cosðΔkd0jþ ϕÞ

Z
t

0

cosðωdt0Þdt0: ð6Þ

The condition maxj;ljJðionsÞj;l j ≪ Ω ensures that the anoma-
lous terms are fast rotating, whereas those that preserve the z
component of the spin are renormalized by the phases
e�i½ΔjðtÞ−ΔlðtÞ�. These quantities can be simplified by using
suitable trigonometric identities along with the Jacobi-Anger
expansion eiz sin θ ¼ P∞

n¼−∞ BnðzÞeinθ, where BnðzÞ are the
Bessel functions of the first kind [37]. Assuming that

ωd ≫ maxj;ljJðionsÞj;l j, the only non-fast-rotating contribution

comes from n ¼ 0, and H0
total ≃HðionsÞ

SSH , with

HðionsÞ
SSH ¼

XN
j;l¼1

JðionsÞj;l J π=2
j;l ðσþj σ−l þ σ−j σ

þ
l Þ; ð7Þ

where we fix Δkd0 ¼ π=2 to achieve the periodic couplings

J π=2
j;l ¼ B0

�
2η sin

�
π

4
ðjþ lÞ þ ϕ

�
sin

π

4
ðj − lÞ

�
: ð8Þ

Since J π=2
j;jþ1 ¼ J π=2

jþT;jþTþ1 with T ¼ 2, these couplings
reproduce the dimerization of the original SSH model in the
limit of nearest-neighbor interactions. We will refer to the
spin implementation (7) as the generalized SSH model. In
analogy with Eq. (1), the dimerization is given by the
differential ratio of the couplings between sites with j even
and odd, i.e.,

δ ¼ J π=2
2;3 − J π=2

1;2

J π=2
2;3 þ J π=2

1;2

: ð9Þ

In Eq. (9), JðionsÞj;l factors out, since JðionsÞj;l ¼ JðionsÞj−l .
Finally, we remark that we can easily extend our

derivation to account for the effect of an inhomogeneous
ion-ion spacing, whose main effect would be to induce an
extra site dependence in the couplings to the standing wave.
Since the topological properties investigated below are
robust against perturbations, we can expect our results to be
valid even when small inhomogeneities are considered.
Study in the one-excitation subspace.—The preparation

of single excitations can be easily realized in trapped-ion
chains, as demonstrated in implementations of the Ising and
XY models [14,15]. The one-particle sector is spanned by
the vectors jji≡ σþj j↓↓↓ � � �i; j ¼ 1;…; N. We can think
of the state j↓↓↓ � � �i as a vacuum of particles, and,
accordingly, jji represents an excitation localized at site
j. Since Eq. (7) is invariant under arbitrary rotations in the
xy plane, the Hamiltonian does not mix jji with states
within subspaces of different numbers of excitations.
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Therefore, the dynamics of jji is dictated by the restriction
of the Hamiltonian to the one-excitation subspace, that is
given as

H̄ðionsÞ
SSH ¼

XN
j;l¼1

hj;lðjjihlj þ jlihjjÞ; hj;l ¼ JðionsÞj;l J π=2
j;l :

ð10Þ
For ϕ ¼ 3π=4 and η > 0, hj;l possesses two (quasi-) zero-
energy modes, which feature localization at the edges; we
showone of these in Fig. 1(a). The edge state has appreciable
support only on the odd sites, which is a consequence of the
chiral symmetry [38]. Indeed, the chiral-symmetric limits
of this Hamiltonian are attained for ϕ ¼ π=4 and 3π=4
(see Ref. [39]). We have depicted the dimerization (9) as a
function of η in these limits [cf. Fig. 1(b)]. We note that for
ϕ ¼ 3π=4, δ is positive, and accordingly the model presents
edge states. This is accompanied by a nonzero value of the
associated bulk invariant, the Zak phase [46], which can take
the value 0ð�πÞ in the trivial (topological) phase. As shown
in Fig. 1(c), the Zak phase is 0 or �π in the chiral limits
ϕ ¼ π=4 and ϕ ¼ 3π=4, signaling the emergence of edge
states in this latter case.
By fitting the edge state to an exponential,we can estimate

its localization length numerically. According to Eq. (2), this
quantity is a decreasing function of the dimerization. This

holds true for H̄ðionsÞ
SSH , as shown in Fig. 1(d). However, we

note that ξloc decreases with the range of the interactions as
well; i.e., there is an enhancement of the localization effect.
This feature is not captured by the prediction for the original

SSH model, since ξloc exclusively depends on δ, and this
latter quantity is insensitive to the range of the couplings
[cf. Eq. (9)]. To obtain the dependence of the localization on
the interaction rangewe have considered the effective theory

for the low-energy sector of H̄ðionsÞ
SSH , which captures the long-

range effects by a renormalization of the parameters of the
theory compared to those of the original SSH model.
Localization length of the edge states of H̄ðionsÞ

SSH .—The
effective theory of the SSH model in k space can be
described in terms of pairs of states jk;�i ¼ jk� kFi,
where kF ≡ π=2. The low energy Hamiltonian is given by
HlowE ¼ ðN=2πÞ R π=2

−π=2 hðkÞdk, with
hðkÞ ¼ kvFðjk;þihk;þj − jk;−ihk;−jÞ

− iΔ0ðjk;þihk;−j − jk;−ihk;þjiÞ: ð11Þ
The two parameters vF ¼ 2J andΔ0 ¼ 2Jδ fully character-
ize the low energy sector. From them, the dimerization is
directly obtained as Δ0=vF ¼ δ, and since the effective
theory assumes that Δ0 ≪ vF, we can approximate the
localization length (2) as

ξloc ∼
vF
Δ0

: ð12Þ

This prediction must hold for any lattice model whose low-
energy excitations are captured by a Hamiltonian such as

HlowE. In particular, this is the case for H̄ðionsÞ
SSH , that can be

rewritten as
P

N
j¼1

PN−j
d¼1−j h

ðdÞ
j ðjjihjþ dj þ jjþ dihjjÞ,

where hðdÞj ≡ JðionsÞd ½J ðþÞ
d þ J ð−Þ

d ð−1Þj�, with

J ð�Þ
d ¼ 1

2
ðJ even

d � J odd
d Þ; ð13Þ

and the latter quantities defined as J π=2
j;jþd for j even or odd,

respectively. In terms of plane waves, and assuming
N → ∞, we obtain

H̄ðionsÞ
SSH ¼

X
k

ε0ðkÞjkihkj þ
X
k

Δ0ðkÞjkþ πihkj þ H:c:;

ð14Þ
where we have defined

ε0ðkÞ ¼ 4
X∞
d¼1

JðionsÞd J ðþÞ
d cos ðkdÞ;

Δ0ðkÞ ¼ 2
X∞
d¼1

JðionsÞd J ð−Þ
d eikd. ð15Þ

From these quantities, we can obtain the parameters of the
effective theory as (see Ref. [39])

v0F ¼ ∂ε0ðkÞ
∂k

����
k¼kF

; Δ0
0 ¼ 2Im½Δ0ðk ¼ kFÞ�; ð16Þ

and compute the localization length (12). We show that this
prediction accurately holds for several values of δN=2=tC in

(a)
(b)

(c) (d)

FIG. 1. (a) Plot of the midgap state (circles) near the left end,
with δN=2=tC ¼ 4, for N ¼ 100, δ≃ 0.1 (ϕ ¼ 3π=4, η≃ 0.62).
The solid line is a guide for the eye, and the dashed curve is the
envelope of the edge state. (b) Dimerization as a function of η in
the chiral limits. (c) Zak phase for different values of η, signaling
the topologically trivial (jνj ¼ 0) and nontrivial (jνj ¼ π) phases.
(d) Dependence of ξloc with the dimerization, for δN=2=tC ¼ 0.1,
0.5, 8. The dashed line corresponds to Eq. (9).
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Fig. 2(a), along with the corresponding interaction range
[cf. Fig. 2(b)].
The localization enhancement could be actually mea-

sured in an experiment. The idea is to unveil the existence
of the edge state by studying the dynamics of a single
excitation at the boundary [14,15]. To detect an edge state
located at, e.g., the left end of the chain, we can prepare the
“excited state” jψðt ¼ 0Þi ¼ j↑↓↓…i, which has a large
overlap with the boundary mode, and look at its survival
probability at long times, P≡ jhψðtÞjσþ1 σ−1 jψðtÞij2, t → ∞.
This quantity can be estimated as (see Ref. [39])

P

�
1

ξloc

�
≃

�
c1
ξ2loc

þ c2
N

�
2

: ð17Þ

Since the overlap is appreciable only if the Hamiltonian
presents an edge state, P will take negligible values except
in the event of localization at the left end. The initial
condition jψðt ¼ 0Þi requires applying a π pulse to the
leftmost ion in the chain, which in turn can be prepared in
the “ground state” j↓↓↓…i by optical pumping [13]. Then

we can switch on the Hamiltonian HðionsÞ
SSH , and wait up to

t ≫ Δ−1
0 , where Δ0 is the lowest energy scale in the

Hamiltonian. Finally, we can perform a fluorescence
measurement of the state of the leftmost ion. We have
numerically confirmed the dependence of P on ξloc
[cf. Eq. (17)] in Fig. 2(c). Deviations from the power
law P≃ ξ−βloc, with β ¼ 4, are the consequence of finite size
effects, which play a less important role when 1=ξloc ≪ N.
Correlations in the many-body ground state.—So far we

have been dealing with the single-excitation subspace.
Nevertheless, we expect that some localization at the edges

features as well in the ground state of the many-body
Hamiltonian (7). In a finite chain, states localized at each
end hybridize to give rise to solutions that have support at
the left and right boundaries. We expect that the correla-
tions between the ends are zero if there is no localization at
the edges whereas they must have a nonzero value other-
wise, a result that has been established for the SSH model
[24]. We illustrate this fact in Fig. 3, where we have
computed hσz1σzNi as a function of the dimerization for both

HSSH and HðionsÞ
SSH . The correlations in the original SSH

model are non-zero for δ > 0 as expected. This holds

qualitatively true for HðionsÞ
SSH as well. Indeed, in the regime

of short range of the interactions the correlations are larger
than those of the original SSH model, which is consistent
with the enhanced localization length predicted in the one-
excitation subspace (cf. Fig. 2). Conversely, we observe a
degradation of the correlations in the long-range interaction
regime; i.e., for δN=2 → 0 there is a decrease in the locali-
zation effect. This result is a consequence of the mixing—
induced by the interactions—of the single-particle edge
states with the bulk modes. To quantify this effect we
express our generalized SSH model in terms of Jordan-

Wigner fermions as HðionsÞ
SSH ¼ P

N
l>j 2J

ðionsÞ
j;l J π=2

j;l ðc†jKj;lclþ
cjKj;lc

†
l Þ, where Kj;l ≡Q

l−1
m¼jð1 − 2c†mcmÞ. We neglect

terms for which jj − lj ≥ 3 and recast this problem

as HðionsÞ
SSH ≃H0 þHint, where H0 ¼

P
N
j¼1ðJð1Þj c†jcjþ1þ

Jð2Þj c†jcjþ2 þ H:c:Þ, with JðαÞj ¼ 2JðionsÞj;jþαJ
π=2
j;jþα and,
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(a)

(b)

(c)

FIG. 2. (a) Localization length of the edge state, from the exact

diagonalization of H̄ðionsÞ
SSH (solid line) for N ¼ 100 sites, and from

expression (12) (circles) with δ ¼ 0.1 (ϕ ¼ 3π=4, η≃ 0.62). The
largest enhancement of ξloc occurs for δN=2=tC < 1. (b) Interaction

range ξint of the exponentially decaying component of JðionsÞj;l .
(c) Log-log plot of the survival probability P as a function 1=ξloc.
For ξloc → 1, P ∼ ξ−βloc with β≃ 3.8, consistent with the prediction
(17). We take δN=2=tC ¼ 1=3, N ¼ 1000, and values of η in the
interval 0.13–0.5, for ϕ ¼ 3π=4.

(a) (b)

FIG. 3. (a) Correlations hσz1σzNi for N ¼ 16, ϕ ¼ 3π=4 and
using η to tune the dimerization. The arrow shows the direction of
the decreasing range of the interactions, or increasing detuning
from the bottom of the motional band. We have plotted curves for
δN=2=tC ¼ 0.5, 1, and 10. The solid lines represent the exact
result from Hamiltonian (7), the dashed lines the results from the
truncated Hamiltonian (see Ref. [39]), and the circles correspond
to the predictions of the HF approximation. (b) Value of the
parameter Z for different interaction ranges and δ ¼ 0.1, 0.3, 0.5
from bottom to top.
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Hint ¼ −2
XN
j¼1

Jð2Þj ðc†jc†jþ1cjþ1cjþ2 þ H:c:Þ: ð18Þ

We deal with the interaction term within the Hartree-
Fock approximation [47], which renders a simplified
Hamiltonian quadratic in fermion operators (see Ref. [39])

HHF ¼
XN
μ¼1

εμc
†
μcμ − 2

XN
μ;μ0¼1

Vμ;μ0c
†
μcμ0 : ð19Þ

HHF is expressed in terms of the eigenstates of H0,
which correspond to the solutions of the Hamiltonian
in the one-excitation subspace [cf. Eq. (10)], that is,
cj ¼

P
N
μ¼1Mj;μcμ. The one-body edge states are eigen-

states of H0 and Vμ;μ0 induces the mixing of these states
with the bulk modes. We quantify this effect with a
parameter Z, which measures the overlap between the
unperturbed boundary modes and the corresponding states
in the presence of interaction, and which can be esti-
mated by elementary perturbation theory as Z≃ 1−P

N
μ≠E:S: 4jVE:S:;μj2=ðεE:S: − εμÞ2. We show this quantity

as a function of the range of interactions in the inset of
Fig. 3. Accordingly, when δN=2 → 0 the fidelity drops
significantly, signaling the decay of the edge modes into the
continuum of the states in the bulk. Finally the average
hσz1σzNi can be measured in an experiment by detecting the
photoluminescence from individual ions at the ends of the
chain (e.g., by electron-shelving techniques [25]).
Conclusions and outlook.—In this work we have estab-

lished the feasibility of implementing a topological insu-
lator with trapped-ion quantum matter. We have shown that
the edge states get more localized because of the long-range
interactions in ion chains, and that the localized solutions
survive to the interactions in the many-body ground state.
An immediate extension of this work would consist in the
computation of the Zak phase of the many-body ground
state, and establishing the symmetries of the model, to shed
light on a prospective bulk-edge correspondence in this
system. Our ideas could be extended to systems of cold
atoms [48,49] or superconducting qubits [50], where
dipolar interactions are available.
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