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We develop a unified theory that encompasses the macroscopic dynamics of recurrent interactions of
binary units within arbitrary network architectures. Using the martingale theory, our mathematical analysis
provides a complete description of nonequilibrium fluctuations in networks with a finite size and finite
degree of interactions. Our approach allows the investigation of systems for which a deterministic mean-
field theory breaks down. To demonstrate this, we uncover a novel dynamic state in which a recurrent
network of binary units with statistically inhomogeneous interactions, along with an asynchronous
behavior, also exhibits collective nontrivial stochastic fluctuations in the thermodynamical limit.
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An important means to understand the collective dynam-
ics of high-dimensional spin systems is to use the mean-
field theory (MFT) to describe the activity of the system
population in terms of associated lower-dimensional
dynamics [1]. The classical characterization of the emerg-
ing states uses the analysis of the systems’ Hamiltonian
functions [2]. However, this powerful approach cannot be
applied, if the underlying interactions among units are
directed and asymmetrically disordered as in various soft
materials [3] and, in particular, recurrent neuronal networks
[4], in contrast to the bidirectionality of interactions in spin
glasses [1]. The formulation of MFTs in these cases
typically assumes statistically homogeneous interactions
among units in extensively large networks [4,5]. The
standard theoretical framework here is to expand the
system’s master equation (so-called Kramers-Moyal expan-
sion), in which the lowest-order tree-level expansion of
these theories yields the mean-field limit and systematic
corrections can be obtained by perturbative and renormal-
ization group methods [2]. In the case of statistically
homogeneous binary recurrent networks, various methods
have been used to obtain finite-size fluctuations [6], and an
interesting approach to analyze the mean-field limit of a
single instance of asymmetric Ising networks has been
investigated [7]. However, no general theory has been
developed to treat systems with statistically inhomo-
geneous and asymmetric interactions. In this Letter, we
use a surprisingly elementary method that can be used to
remove the need for these assumptions by deriving a novel
MFT that captures the dynamic behavior of recurrent
networks with binary units, including finite-size effects
on population fluctuations. In this framework, we isolate
the finite-size fluctuation of the system in the martingale
structure of the network’s Markovian dynamics and derive
the macroscopic behavior of the system given the gain
function of individual units. Our mathematical approach
readily identifies the conditions on the connectivity

structure that are necessary to guarantee the convergence
of the average population activity to a deterministic limit.
Furthermore, our analysis reveals a novel dynamic state in a
network with inhomogeneous coupling, in which the large-
amplitude fluctuations of the average population activity
survive irrespective of the network size. Such stochastic
synchronization could be relevant for the description of
collective neocortical network dynamics.
Consider a model network that is described by an

adjacency binary matrix J ¼ ðJijÞ of N binary units, whose
current states are denoted as nðtÞ ≔ (n1ðtÞ;…; nNðtÞ). The
vector nðtÞ is a time-continuous Markov chain on f0; 1gN
with a rate matrix, where Qðn;mÞ ¼ 0 if and only if
jjn −mjj ≥ 2 and

Qðn;mÞ ¼
�
fiðnÞ if m − n ¼ ei
1 − fiðnÞ if m − n ¼ −ei;

whereeðiÞj ¼δij denotes the ith unit vector. In order to comply
with the centralization property ofQmatrices, it follows that
Qðn;nÞ¼−

P
N
i¼1niðtÞ½1−2fi(nðtÞ)�þfi(nðtÞ). The ana-

lytical gain function fi(nðtÞ) defines the state transition
rate of a unit i, given the state of the network nðtÞ, and it is
assumed to take values in the range [0, 1]. Typically, this
function is written as fi(uiðtÞ), where uiðtÞ, which repre-
sents the input to the unit iwith the scaling parameter 0 < γ,
is written as

uiðtÞ ≔ J̄K−γ
i

XN
j¼1

JijnjðtÞ þ K1−γ
i μ0;i; ð1Þ

where J̄,Ki, and μ0;i are the coupling strength, the number of
recurrent input units (Ki ≔

P
N
j Jij), and the external drive

to the ith unit, respectively. For the convenience of the
current presentation, we consider here networks with
Ki ¼ K, fi ¼ f, and μ0;i ¼ μ0 for all i. We will provide
below [in Eqs. (10) and (11)] conditions on the network
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structure J that imply the convergence of the averaged
population activity in the network towards a deterministic
limit

mðtÞ ¼! lim
N→∞

1

N

XN
i¼1

niðtÞ: ð2Þ

Here, mðtÞ is known as the mean-field limit and has the
following temporal dynamics:

d
dt

mðtÞ ¼ −mðtÞ þ F(mðtÞ) ð3Þ

for some a priori unknown functionF. In order to determine
F, we use the following semimartingale decomposition, that
specifies the difference between n̄ðtÞ ≔ ð1=NÞPN

i¼1 niðtÞ
(i.e., the average population activity of a finite-size network)
and the mean-field limit mðtÞ of the system:

n̄ðtÞ −mðtÞ ¼ ½n̄ð0Þ −mð0Þ� −
Z

t

0

ds½n̄ðsÞ −mðsÞ�

þ
Z

t

0

ds

�
1

N

XN
i¼1

f(uiðtÞ) − F(mðsÞ)
�

þMðtÞ; ð4Þ
where MðtÞ is some square integrable martingale that,
according to the general theory of Markov processes [8],
satisfies

E½MðtÞ2� ¼ 1

N2

Z
t

0

dsE½−Q(nðsÞ;nðsÞ)� ≤ t
N
; ð5Þ

where E is the expectation operator. Note that E½MðtÞ� ¼ 0
and, in general, MðtÞ specify finite-size fluctuations in the
average population activity. Provided thatmðtÞ exists [refer
to Eqs. (10) and (11) for a justification of this ansatz], we can
construct the functionF by expanding ð1=NÞPN

i¼1 f(uiðtÞ)
as N → ∞ in Eq. (4) around

μ1ðtÞ ≔ K1−γ½J̄mðtÞ þ μ0�: ð6Þ
Using the lemma that is described in Ref. [9], we obtain the
following series expansion:

F(mðtÞ) ¼ f(μ1ðtÞ)þ
X∞
r¼2

fðrÞ(μ1ðtÞ)
r!

μrðtÞ; ð7Þ

where μ1 represents the average input to a unit in the network
at time t. The higher-order coefficients can be computed
by expanding μr ≔ limN→∞ð1=NÞPN

i¼1½ðui − μ1Þr�. The
second-order coefficient is given by

μ2ðtÞ ¼ J̄2K1−2γmðtÞ½1 −mðtÞ�; ð8Þ
and the subsequent coefficients are given by

μrðtÞ ¼ J̄rK−rγ
Xr

q¼0

aqmðtÞq
Xr−q
s¼0

bsmðtÞs; ð9Þ

where

aq ≔
� r
q

�
ð−1ÞqKq

and

bs ≔ Sðr − q; sÞðKÞs:
Here, S is a Stirling number of the second kind, and ð·Þs
denotes the falling factorial. In the binomial expansion of
μrðtÞ given in Eq. (9), the summation over j (note that j is
hidden in the definition of ui) is performed using the ansatz
thatmðtÞ exists; thereafter, summation over i in the average
operator limN→∞ð1=NÞPN

i¼1½·� is applied. In order to
provide the sufficient conditions for the existence of a
deterministic limit mðtÞ, the summation order must be
changed. Therefore, the first condition for mðtÞ and μ1ðtÞ
to exist is

lim
N→∞

1

N2

XN
j¼1

�XN
i¼1

�
Jij −

K
N

��2
¼ 0: ð10Þ

This condition essentially states that column sum distribu-
tion of the connectivity matrix must obey the weak law of
large numbers (LLNs), and Eq. (10) implies that the
coefficient in front of f0 in the series expansion that
leads to Eq. (7) vanishes in the thermodynamic limit [9].
The second condition for the pointwise convergence of
an averaged population activity to the MFT in Eq. (2) is
given by

lim
N→∞

1

N2

XN
j1≠j2

�XN
i¼1

�
Jij1Jij2 −

KðK − 1Þ
NðN − 1Þ

��2
¼ 0: ð11Þ

This condition specifies that, as N → ∞, the mean covari-
ance of columns in the connectivitymatrix Jmust satisfy the
LLNs. The higher-order condition can be similarly deter-
mined in order to achieve a pointwise convergence of the
averaged population activity to its mean-field limit, as
described in Ref. [9]. An important result here is that the
condition in Eq. (10) implies that Eq. (11) and all higher-
order conditions are satisfied for all fixed-in-degree net-
works and iid connectivity matrices, and therefore the MFT
in Eq. (3) becomes universal for those coupling structures.
In the above calculation, we assume networks with finite

input connections per unit (i.e., K). However, it is often of
interest to study network dynamics when the number of
inputs into units is large (e.g., K → ∞). In order to study
this classical case, we must investigate the asymptotic
behavior of μr in Eq. (9) in the order of K; it can be
observed that the odd coefficients are given by
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μ2kþ1 ∼OðK1−ð2kþ1ÞγÞ
and the even coefficients are given by

μ2k ∼OðK1−2kγÞ þ ð2k − 1Þ!!μk2;
for k ∈ N. Hence, it is apparent that the scaling parameter γ
plays a critical role in the large K limit. The scaling
parameter γ is generally assumed to take the value 0.5; in
this case, μ2 ∼Oð1Þ and the mean-field coefficients of
Eq. (3) converge as K → ∞, towards the central moments
of a Gaussian distribution function, and the network can be
asynchronous similar to the nonequilibrium and chaotic
dynamics observed in Ref. [4]. As a result, the related
power series that is given by Eq. (7) can be reformulated in
terms of a simple Gaussian integral; in this special case,
Eq. (3) reduces to

d
dt

mðtÞ ¼ −mðtÞ þ
Z

dxfðxÞN ðx; μ1; μ2Þ; ð12Þ

where N is a Gaussian density. In the above analysis, we
first take N → ∞ to arrive at the mean-field of Eq. (3), and
then we consider K → ∞ in order to recover Eq. (12). This
derivation recovers the result that has been previously
known [4,12], while it provides insight on the structure of
corrections to Gaussian density for finite K networks. Our
analysis here shows that the finite K correction to Eq. (12)
is relatively small. Thus, using asymptotic corrections up to
the θth order to the Gaussian density, the function F for a
finite K is given by

F(mðtÞ) ¼
Z

dxfðxÞ½1þ GθðxÞ�N ðx; μ1; μ2Þ; ð13Þ

where GθðxÞ ≔
P

θ
k¼3½ð−1Þkμk=k!μk=22 �Hkðx − μ1=

ffiffiffiffiffi
μ2

p Þ;
here, Hk is a Hermite polynomial of kth order. This
representation is the usual form of the Gram-Charlier
expansion (the so-called type A series) is an expansion
of a probability density function about a Gaussian distri-
bution with common μ1 and μ2 [13]. This expansion has
been used in Eq. (C2) of Dahmen, Bos, and Helias [12] to
include finite-size corrections due to pairwise correlations
in the MFT. The structure of centralized moments in Eq. (9)
allows for an arbitrary precise calculation of the mean-field
limit. It is noteworthy that Eq. (13) is the steady-state mean-
field limit for all possible fixed-in-degree networks.
The semimartingale decomposition that is given in

Eq. (4) provides information on the finite-size scaling of
the system. Using Eq. (5), we can determine the fluctuation
magnitude of the average population activity in finite
networks in the mean-square sense as

E½MðtÞ2�

¼ 1

N2

Z
dsE

�XN
i¼1

niðsÞ½1 − 2f(uiðsÞ)� þ f(uiðsÞ)
�
;

and, by expanding ð1=NÞPN
i¼1 f(uiðtÞ) at μ1ðtÞ, we

arrive at

E½MðtÞ2�¼ 1

N

Z
t

0

ds(mðsÞf1−2½gðμ1ÞþR�gþgðμ1ÞþR);

ð14Þ
where gðμ1Þ ≔ f(μ1ðtÞ)þ f00ðμ1Þμ2=2 and R ≔P∞

r¼3½fðrÞðμ1Þ=r!�μr denotes the remainder terms of the
expansion. The average population activity dynamics of a
finite-size network can be described approximately in terms
of the following Ornstein-Uhlenbeck process:

dn̄ðtÞ ≈ ½−mðtÞ þ F(mðtÞ)�dtþ σðtÞffiffiffiffi
N

p dBt; ð15Þ

where σ2ðtÞ ≔ mðtÞ½1 − 2g(μ1ðtÞ)þ g(μ1ðtÞ)� and B· is
Brownian motion. In the approximation of Eq. (15), we
ignore the contribution of remainder terms (e.g.,R) to σðtÞ.
Our result recovers previously known scaling of the finite-
size fluctuations [14] using the semimartingale method.
In order to demonstrate the applicability of our

approach, we consider two scenarios that are relevant to
the theoretical analysis of neural systems. The first scenario
is that units receive a constant external input μ0 > 0. When
J̄ < 0 and γ ¼ 0.5, this system exhibits a nonequilibrium
and chaotic state for which the external input is canceled
by internal recurrent dynamics [4]. We choose a widely
used gain function in the neural networks theory which is
given by

fðxÞ ≔ 1þ ErfðαxÞ
2

: ð16Þ

The parameter α describes the intrinsic noise intensity of
the individual units and therefore must be positive. When
α → ∞, this transfer function approximates to the well-
studied Heaviside step function [4,12]. Using the transfer
function given by Eq. (16) (with α ¼ 5) and a directed
fixed-in-degree Erdős-Rényi network (with K ¼ 10), we
compute the complete steady-state mean-field limit using
Eq. (13) by including up to the fifth-order corrections
(Fig. 1, red line). We compare the complete MFT (Fig. 1,
red line) with the mean-field prediction that assumes only
Gaussian statistics (i.e., K → ∞) in Eq. (12) (Fig. 1, dashed
gray line). The difference between the predictions becomes
apparent as jJ̄j increases. Numerical simulations of a finite-
size network (N ¼ 1000) are used to estimate the steady-
state population activity by averaging 20 independent trials
(Fig. 1, black dots). The equilibrium population average
activity of simulated networks (Fig. 1, black dots) exhibits
excellent agreement with both the complete (Fig. 1, red
line) and the Gaussian approximation (Fig. 1, dashed gray
line) of the mean-field limit in the case of weak coupling.
However, in cases where the coupling is strong, the average
population equilibrium activity deviates from the Gaussian
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approximation (Fig. 1, dashed gray line) and, instead,
follows the predictions of the complete mean-field limit
(Fig. 1, red line). Therefore, the Gaussian approximation
that is given in Eq. (12) is reasonable only for weak
coupling and a relatively large value of K. The error
between steady-state population activity from the simula-
tions (Fig. 1, black dots) and the Gaussian approximation
(Fig. 1, dashed gray line) increases as jJ̄j becomes larger
(Fig. 1, downward gray triangles in the inset), in contrast to
the complete MFT staying constant (Fig. 1, upward red
triangles in the inset).
In the second scenario, we show that an inherently

stochastic mean-field limit with nontrivial fluctuations can
emerge in a network with statistically inhomogeneous out
degrees. The condition in Eq. (10) guarantees the con-
vergence of the average population activity to the predic-
tion of MFT. Indeed Eq. (10) indicates that, as N → ∞, the
average column sum of the connectivity matrix J should be
K. It is straightforward to construct networks that do not
obey this rule; such networks lose their pointwise con-
vergence to a deterministic MFT in Eq. (3). An extreme
example of a network of this kind is a network that has a
single unit, nj� , that connects into ρN units in the circuits,
where 0 < ρ ≤ 1 is the fraction of units in the network that
are postsynaptic for nj�. Numerical simulations of such a
network (N ¼ 5000 and ρ ¼ 1) show large-amplitude
population activity fluctuations (Fig. 2, black line), in
contrast to the smaller fluctuations of a homogeneous
network (Fig. 2, gray line). Our approach allows the

construction of stochastic correction terms to the mean-
field limit by isolating the unit nj� from the network and
then taking the limit N → ∞. Therefore, a first-order
correction to the function F of Eq. (7) can be derived as

Fs(mðtÞ) ≈ F(mðtÞ)þ ρJ̄K−γf0(μ1ðtÞ)nj�ðtÞ: ð17Þ
Fs is a stochastic function, since nj� is a binomial random
variable for which the probability of being at state one is
mðtÞ; the mean-field equation is thus transformed into an
ordinary stochastic differential equation. The correction
term in Eq. (17) indicates that the observed large fluctua-
tions (Fig. 2, green line) are indeed a finite K phenomenon.
Therefore, in large networks that have a finite number of
connections between units (e.g., finite K networks), it
suffices that only one unit breaks the condition (i.e., ρ > 0)
and, as a result, the deterministic MFT collapses (Fig. 2,
inset). The emergence of large-amplitude population events
in Fig. 2 has been observed previously as the indication of
the “synfire chain” in cortical network simulations [15]. It
is noteworthy that there is compelling evidence that a few
neurons can form an extensive number of postsynaptic
connections in cortical microcircuits [16]. In Eq. (17), we
observe that a unit with a high out degree can influence the
macroscopic dynamics of the system. Therefore, recent
experimental results that indicate the diverse couplings
between single-cell activity and population averages in
cortical networks [17] can be the result of inhomogeneity of
out degrees.
In this Letter, we studied a simplified model that

captures the essential nonequilibrium aspects of a cortical

FIG. 1. Convergence of the average population activity to the
steady-state MFT predictions. The red line indicates the pre-
dictions of the complete MFT up to fifth-order correction. The
dashed gray line is the predictions of mean-field equation (12),
assuming only Gaussian fluctuations. The black dots represent
network simulations averaged over 20 independent trails (error
bars are smaller than the symbol size). The inset is the root mean
square of error (rms) between simulations and the complete
theory (upward red triangles) and the Gaussian approximate
theory (downward gray triangles). The simulations were per-
formed using a Gillespie algorithm for T ¼ 5 × 105 steps with the
gain function given by Eq. (16). The averaged activity was
estimated in the last 5 × 103 steps across all trials. Parameters:
N ¼ 1000, γ ¼ 0.5, α ¼ 5, K ¼ 10, and μ0 ¼ 0.1.

FIG. 2. Emergence of stochastic MFT. The black line shows the
temporal evolution of a simulated network; this network does not
have a deterministic MFT, since the condition in Eq. (10) is not
satisfied. The out degree of a single unit in the network was set to
beN [i.e., ρ ¼ 1 in Eq. (17)]. For comparison, the gray line shows
the average population activity of a similar network for which
ρ ¼ K=N. The inset indicates the normalized empirical standard
deviation of population activity temporal dynamics (σ̂=σ̂0) as a
function of ρ (averaged over 20 independent trials with an
expected number of 650 updates per unit). Simulations for the
inset were performed using the stochastic update scheme de-
scribed in Ref. [4]. Parameters: N ¼ 5000 and J̄ ¼ −0.7, and all
other parameters are as in Fig. 1.
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asynchronous state [4], and it allowed us to demonstrate the
calculation of a complete statistics of fluctuations in fixed-
in-degree networks. Our results show that the MFT for
binary units can be fundamentally constructed from the
LLNs and the emergence of intrinsic fluctuations does not
require the application of the central limit theorem. It is
noteworthy that considering other heterogeneities in the
system requires extra averaging operations and performing
self-consistent calculations of temporal and spatial fluctu-
ations. For instance, in a network in which unit i has Ki
incoming connections, it can be shown that the power
of m in Eq. (9) must be replaced by moments of the
rate distribution, EðmrÞ, which can be self-consistently
determined.
The semimartingale decomposition captures the finite-

size effect [Eq. (15)] in the orthogonal direction to the
average correlations between units. These correlations have
been investigated previously [6]. Here, the finite-size
scaling of fluctuations can be derived directly from rate
matrix Q. In a recent study by Dahmen, Bos, and Helias
[12], the MFT of binary units is extended by a cumulant
expansion that allows the systematic calculation of finite-
size corrections to cumulants of arbitrary order. In contrast,
in our analysis all remaining correlations are implicitly
encapsulated in the martingale part. Importantly, the
application of the martingale theory and the expansion
of the averaging operator allows a tractable alternative to
the perturbative expansion of the system’s state-space
evolution to formulate an exact theory for network collec-
tive dynamics.
Our approach in this Letter goes beyond the classical

asymptotic analysis of random connectivities, which
requires statistical conditions for connectivity matrices, J,
to ensure pointwise convergence to a deterministic MFT,
irrespective of any fine or major motifs in the connectivity
matrix, and suggests a universality class of MFT for
all fixed-in-degree and iid networks. Furthermore, we
demonstrated a computationally interesting phenomenon
for the emergence of a stochastic MFT by breaking the first
condition [Eq. (10)]. Our framework can be readily
exploited to determine the mean-field equilibrium of
symmetrically disordered systems, in the presence of
microstructures in their interactions such as spin glasses
and associative neural networks [18], similarly. Once the
connectivity matrix is given, it is straightforward to
determine if the system’s mean population activity con-
verges to the MFT in an annealed dynamics with indepen-
dent initial conditions. In the quenched dynamics, the
analysis of metastability requires a further investigation
of the invariance measures of the state space. Taken all
together, we believe this approach paves the way for
investigating the MFT of various network collective
phenomena.
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