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We derive the hydrodynamic equations with fluctuating currents for the density, momentum, and energy
fields for an active system in the dilute limit. In our model, nonoverdamped self-propelled particles (such as
grains or birds) move on a lattice, interacting by means of aligning dissipative forces and excluded volume
repulsion. Our macroscopic equations, in a specific case, reproduce a transition line from a disordered
phase to a swarming phase and a linear dispersion law accounting for underdamped wave propagation.
Numerical simulations up to a packing fraction ∼10% are in fair agreement with the theory, including the
macroscopic noise amplitudes. At a higher packing fraction, a dense-diluted coexistence emerges. We
underline the analogies with the granular kinetic theories, elucidating the relation between the active
swarming phase and granular shear instability.
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Introduction.—Active particles (APs) encompass several
different out-of-equilibrium systemswhere many interacting
agents continuously convert internal energy into self-
propulsion [1]. Living ormanmade instances of such systems
can be found at the microscale, such as bacteria, spermato-
zoa, and Janus spheres [2,3], or at the macroscale, such as
vibrated polar granular particles [4,5] and animal groups
(mammal herds, bird flocks, fish schools), where inertia
becomes relevant [6,7]. APs display intriguing collective
phenomena in the form of disorder-order transitions: Their
complexity implies the existence of many symmetries that
can be broken and several types of possible ordered patterns,
one of the most spectacular being “flocking” [8,9].
The difficulty to fit the behavior of APs into equilibrium

statistical mechanics explains the lack of a unified theo-
retical approach and the unsolved debate about the nature
or specificity of the observed transitions [10]. This is
reflected in a plethora of AP models which—even con-
taining similar microscopic ingredients—may display sub-
tly different macroscopic features; see, for instance, the
comparison between the “run and tumble” model [11,12],
the “active Brownian” model [13–15], and the recent
“Gaussian-colored noise” model [16]. The situation is even
more complex if looking at the many macroscopic theories:
These include phenomenological field equations based
upon fundamental symmetries [2,10], local mean field
approximations [17–21], and theories starting from a
Boltzmann kinetic equation. The latter describe systems
with short-range (collisionlike) interactions, mainly applied
to Vicsek-like models [22–24] or self-propelled elastic hard
spheres [25]. Given that systems of APs do not contain a
huge number of particles, fluctuations are observable and
can even be very large [26–28]: The fundamental problem
of computing macroscopic noise from microscopic models
has been approached through the kinetic theory basically
only for active nematics [29].

A fertile ground for further insights into the collective
behavior of APs with inertia is the study of macroscopic
patterns in fluidized granular materials [30], a connection
made stronger by experiments and models of polar granular
particles [4,5,31–33]. Inertial APs (including animals) and
granular materials seem to share similar theoretical mech-
anisms: Such an analogy stimulates the transposition, into
the realm of inertial APs, of features and methods of
granular kinetic theories [34,35]. Granular active particles
(GAPs) have been revealed to be important also for the
study of giant fluctuations [4,36]. Moreover, the general
theory of fluctuating hydrodynamics received important
inputs from the granular realms in recent years [37–39]
also within simplified lattice gas models [35,40–43]
inspired by lattice gases with conservative interactions
[44]. Notwithstanding such intense activity, a theory of
fluctuating hydrodynamics for GAP models is lacking.
Here we introduce a model of GAPs on the lattice where

pairwise interactions combine excluded volume and dissi-
pative alignment, quite similarly to the off-lattice model in
Ref. [31] and to the one in Ref. [45], which has a slightly
different evolution of the self-propulsion force. Our main
result is a set of hydrodynamic equations for the density,
momentum, and energy fields with fluctuating currents and
source terms, in analogy with recent granular lattice models
[35,42,43]. An application of these general equations is
given under the assumption of local equilibrium [46],
where they describe a gas-swarming phase transition
through the linear instability of the homogeneous disor-
dered state. The homogeneous swarming state arises when
either the noise amplitude is small enough or the aligning
force is strong enough.
Model.—We consider a square lattice in d dimensions of

volume V ¼ Ld, with 1 ≪ N ≤ V self-propelled particles
moving on it. A lattice site i ∈ f1; Lgd ¼ Λ can be
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occupied at most by one particle (excluded volume) and is
described by its occupation number ni ∈ f0; 1g and its
“active velocity” vi ∈ Rd (the meaning of this variable is
discussed later). The elementary moves of our dynamics
amount to (see Fig. 1) (1) hopping, (2) self-propulsion,
(3) nearest-neighbor interaction, and (4) noise. A particle
hops from i to an adjacent j with a probability, per unit of
time, proportional to the projection of vi along the direction
connecting i to j. Self-propulsion consists in a velocity-
dependent force

fð1ÞðvÞ ¼ ωsv

�
1 −

v2

v2s

�
; ð1Þ

i.e., it acts along the direction of the particle’s velocity and
induces the relaxation of its speed toward a set value vs
with a characteristic rate ωs. Pairwise interaction is a
nonconservative force, exerted on v by its nearest neighbor
v0, of the kind

fð2Þðv; v0Þ ¼ −ωdðv − v0Þ; ð2Þ
which—as in granular collisions—satisfies momentum
conservation and dissipates relative kinetic energy at a
typical rate ωd. Finally, a white noise force acts independ-
ently upon each component of the velocity, making it
follow a Wiener process with diffusion coefficient D, when
self-propulsion and interactions are switched off. Here
noise represents the coupling with hidden degrees of
freedom, i.e., surrounding fluids, internal fluctuations in
the self-propulsion mechanism, etc. In Supplemental
Material [47], one can find the detailed stochastic finite-
difference equations for the evolution of ni, nivi, and ei ¼
niv2i =2 for each site i. The probability of a configuration
fni; vig is defined as Pðfni; vig; tÞ. The two-site margin-
alized probability for sites i and j is also defined
as Pijðni; nj; vi; vj; tÞ.
Locally averaged fields are defined as

ρiðtÞ ¼ hnii; ð3aÞ
ρiðtÞui;kðtÞ ¼ hnivi;ki; ð3bÞ
ρiðtÞTiðtÞ ¼ hnijvi − uij2i=d; ð3cÞ

defining the average of an arbitrary function fðÞ as

hfðni;viÞi¼
Y
i∈Λ

� X
ni¼0;1

Z
dvi

�
Pðfni;vig; tÞfðni;viÞ; ð4Þ

and in Eq. (3c) we assumed isotropy of the local temperature.
Fluctuating hydrodynamics.—Our investigation has led

to equations for local averages in the large volume limit
L → ∞, N → ∞ at constant number density ϕ ¼ N=V. In
this limit, the physical spacing between two adjacent sites is
sent to 0 as Δx ¼ 1=L, such that a spatial position in the
system is denoted by a continuous x ∈ ½0; 1�d.
The used assumptions amount to (i) molecular chaos

(expected to be valid in the dilute limit ϕ → 0) with
isotropic velocity factorization:

Pijðni; nj; vi; vj; tÞ ¼ Piðni; vi; tÞPjðnj; vj; tÞ; ð5Þ

Piðni; vi; tÞ ¼ piðni; tÞ
Yd
k¼1

Pi;kðvi;k; tÞ; ð6Þ

(ii) smoothness in the space of averages of generic observ-
ables Fðn; vÞ:

hFiiþ1;t ¼ hFiðx; tÞ þ 1

L
∂xlhFijðx;tÞ þOð1=L2Þ; ð7Þ

l being aCartesian direction l ∈ f1; dg, and iþ 1 denotes the
next-neighbor site in the lth direction.
With the above assumptions, through a direct local

averaging procedure and in the large volume limit [47],
one gets the following “hydrodynamic” equations:

∂tρ ¼ −∇ · j; ð8aÞ

ρ∂tu ¼ −∇ · J þ uð∇ · jÞ þ ρfs; ð8bÞ

ρ∂tT ¼
�
T −

u2

d

�
∇ · jþ 2

d
u∇∶ J −

2

d
∇ · J

− 2ρ2Δd þ 2ρðΔs þDÞ: ð8cÞ

In the above equations,wehave introduced the local averages
for (i) the self-propulsion force fsðx;tÞ¼R

dvPðv;x;tÞfð1ÞðvÞ,
(ii) the power dissipated by pairwise interaction Δdðx;tÞ¼R
dvdv0Pðv;x;tÞPðv0;x;tÞ×ðv−v0Þ·fð2Þðv;v0Þ, and (iii) the

power injected by self-propulsion Δsðx;tÞ¼R
dvPðv;x;tÞ×

½v−uðx;tÞ�·fð1ÞðvÞ=d. The fluctuating currents up to orders
smaller than 1=L read

jl ¼ ρð1 − ρÞul þ σl; ð9aÞ

J kl ¼ ρð1 − ρÞhvkvli þ ςkl; ð9bÞ

Jl ¼ ρð1 − ρÞ 1
2

Xd
k¼1

hv2kvli þ Σl; ð9cÞ

FIG. 1. Sketch of APs in a lattice. Particles A–D show hopping
(black arrows) to neighbor sites according to the directions of
their active velocity (blue arrows), including periodic conditions
(A) and excluded volume (C,D). Next neighbors interact (E,F),
with a force which aligns velocities (from blue to red arrows).
Self-propulsion acts in the direction of the velocity and brings
the speed toward a fixed value (G, from blue to green arrow).
The velocity of a particle can be modified also by external noise
(H, from blue to green).
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for density, momentum, and energy, respectively.
Equations (9) are isotropic, even if on a squared lattice, as
opposed to previous lattice gas automata [48,49], possibly
because of the different modeling of microscopic velocities.
The terms σl, ςkl, andΣl are current noises with zero average.
Our calculation indicate that such noises are Gaussian and
white, with amplitudes given explicitly in Supplemental
Material [47].
It is interesting to discuss the terms ρð1 − ρÞ appearing in

the currents. These are an effect of the excluded volume and
clarify the meaning of our active velocity vi: It is not
equivalent to the actual infinitesimal displacement of the
particle. The active velocity rather represents the tendency
to go at a given speed in a certain direction, such as self-
propulsion: a tendency which can be frustrated by excluded
volume and that can be immediately resumed when the
target site becomes free. In the dilute limit ρ → 0, this is not
a relevant difference, but it can be appreciated at relatively
moderate densities.
Stability analysis.—In order to understand the relevance

of our hydrodynamic equations, we discuss the stability of
homogeneous steady states—i.e., states where fields do not
depend upon spatial coordinates. We adopt adimensional
variables, using 1=ωs and vs=ωs as units of time and length,
respectively. The only free parameters left are density ϕ,
relative rate of dissipation γ ¼ ωd=ωs, and relative strength
of noise Γ ¼ D=ðωsv2sÞ. Moreover, to close our equations,
we assume a Gaussian local velocity distribution:
Pðv; tÞ ¼ ½2πTðtÞ�−d=2 exp ½−jv − uðtÞj2=2TðtÞ�. Such an

assumption rests upon the fact that in the limit of large
noise or small self-propulsion one recovers the driven
granular gas model, yielding a nearly Gaussian velocity
distribution [50]. It is also corroborated by observing (see
below) that the disordered-swarming instability is repro-
duced already within such an approximation. The equations
for the homogeneous speed u and temperature T then read

_u ¼ uf1 − ½ðdþ 2ÞT þ u2�g;
_T ¼ −4dϕγT þ 2T

�
1 − ðdþ 2Þ

�
T þ 1

d
u2
��

þ 2Γ; ð10Þ

which have three possible fixed points: the fully
disordered point (u ¼ 0, T ¼ T0), with T0 ¼ f½1 − 2dϕγ þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2dϕγÞ2 þ 4ðdþ 2ÞΓ

p
�=½2ðdþ 2Þ�g which always

exists; and two “swarming” points with u ¼ u−; T ¼ T−
and u ¼ uþ; T ¼ Tþ, which exist only in a certain (γ, Γ)
range [47]. Small—spatially dependent—fluctuations
around the fully disordered fixed point are denoted as
δρðx;tÞ¼ρðx;tÞ−ϕ, δu¼uðx;tÞ, and δT¼Tðx;tÞ−T0.
After converting to Fourier space, decomposing ûk in a
parallel (to k) and d − 1 transverse components (û∥k, û

⊥
k ),

and defining δf ¼ ðρ̂k; û∥k; û⊥
k ; T̂kÞ, the time evolution of

the modes, linearized near that fixed point, reads

∂tδf ¼ MðkÞδf; ð11Þ

with MðkÞ equal to
0
BBBBB@

0 −ϕð1 − ϕÞ2πik 0 0

− 1−2ϕ
ϕ T02πik Bðγ;ΓÞ 0 −ð1 − ϕÞ2πik

0 0 Bðγ;ΓÞ 0

−4dγT0 − 2
d ð1 − ϕÞT02πik 0 −2Aðγ;ΓÞ

1
CCCCCA
; ð12Þ

where

Aðγ;ΓÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2dϕγÞ2 þ 4ðdþ 2ÞΓ

q
;

Bðγ;ΓÞ ¼ 1

2
½1þ 2dϕγ − Aðγ;ΓÞ�: ð13Þ

The first outcome is that the shear mode—reminiscent of
swarming phases—separates from other modes, and it is
stable only when Bðγ;ΓÞ < 0, i.e., for large enough noise

Γ >
2d

dþ 2
ϕγ: ð14Þ

At zero dissipation, the shear mode is stable for any
nonzero noise amplitude. Conversely, at zero noise ampli-
tude, the shear mode is always unstable. Noticeably, in the
absence of a k-dependent competing mechanism for
stability (such as shear viscosity), the stability of the shear

mode is lost synchronously at any k. Among the other three
eigenvalues of MðkÞ, one is always real and two are
complex conjugate (apart from a small region at low k
where they are real). At a given γ, at least in the range
0 < γ < 1=ð2ϕÞ, the eigenvalue associated with shear is the
first to change sign when Γ is reduced; i.e., shear instability
is the leading one. Most importantly, in the region where
the disordered state is stable, at large k and in the dilute
limit, we recover a linear dispersion law (see [47]): This
demonstrates the existence of underdamped wave propa-
gation, which is an interesting consequence of our inertial
microscopic dynamics, possibly related to observations in
natural active systems [7].
Numerical results.—We have simulated the microscopic

dynamics on the lattice at several values of ϕ (up to
ϕ ≈ 15%), γ, and Γ. In the explored region of parameters,
we have observed many transient states and substantially
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only three kinds of stable states (or superpositions of them):
a uniform disordered state, a swarming state, and a
clustered state, as shown in Fig. 2. All observed stable
clustered configurations display a similar almost-radial
(asterlike) velocity field, reminiscent of topological defects
for polar particles or in active nematics [2]. Such a state is
compatible with our hydrodynamic equations (see [47]).
We focus upon two main global observables: (i) a swarm-
ing order parameter identified to be

rðtÞ ¼
���� 1N

XN
j¼1

eiθjðtÞ
����; ð15Þ

where θj is the direction of velocity of the jth particle, so
that rðtÞ ≈ 0 in the fully disordered state and ≈1 in the case
of all particles’ velocities aligned along the same direction;
and (ii) the number NlðtÞ of pairs of first neighbors at time
t, a number that goes from Nl ≈ 2ϕN in the nonclustered
case up to Nl ≈ 2N in the fully clustered case, so that
CðtÞ ¼ NlðtÞ=ð2NÞ ∈ ½ϕ; 1� is a good estimate of the
clustering degree in the system. Simulations start in the
fully disordered case: Particle initial positions are chosen
with a uniform probability in space and normal distribution
for their initial velocity. Monitoring rðtÞ and CðtÞ up to
times tmax larger than the inverse of the minimum of the
eigenvalues of MðkÞ gives a reasonable idea of the fate of

this initial condition and allows us to compare the system’s
phase diagram with the predictions of linear stability
analysis. In Fig. 3, we show the swarming order parameter
r averaged on long times after the system has settled in the
stationary regime, for three values of density ϕ, together
with the line predicted in Eq. (14). The comparison is fair at
all values of ϕ. A study of the dependence of the order
parameters with the system’s size tells us that the transition
gets sharper for increasing L [47]. The study of the C order
parameter [47] shows that at large ϕ ∼ 10% clusters
(coexisting with a dilute background) appear in the region
where the disordered regime is linearly stable. This may
signal the presence of a different globally stable fixed point
[22,23,29,51] or the necessity of refining our assumptions.
Numerical simulations also confirm our predictions

about current noises, defined in Eq. (9). In the case of a
Gaussian local velocity distribution, the noise correlation
for the hopping current reads

hσlðx; tÞσl0 ðx0; t0Þi ¼ δðx − x0Þδðt − t0Þδl;l0ϕð1 − ϕÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffi
2

π
TðtÞ

r
ðΔxÞdþ1: ð16Þ

In the simulation, we measure the microscopic current
ji;p;l ¼ 0;�1, representing the number of particles hopping
—in the pth time step—from site i to its neighbors in the
lth direction. In the homogeneous fully disordered state,
Eq. (16) is equivalent, assuming ergodicity, to

X1;V
i;i0

X1;tmax=Δt

p;p0
ji;p;lji0;p0;l0 ≃ L3ϕð1 − ϕÞ

ffiffiffiffiffiffiffiffiffi
2

π
T0

r
tmax: ð17Þ

The verification of this relation is shown in Fig. 4: We see
that for ϕ < 10% the simulation tends to the theoretical
value as L → ∞. This trend is broken when ϕ > 10%,
which is reasonable as, in that regime, the homogeneous
disordered state is replaced by a nonhomogeneous one, as
put in evidence by the simulations.

FIG. 2. Typical configurations in the three main stable states
observed in the simulations. Left: A uniform disordered state.
Middle: A uniform swarming state. Right: A nonuniform
clustered state with a converging radial velocity field.
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FIG. 3. Swarming phase parameter r (which goes from 0 in the
disordered phase to 1 in the swarming phase; see the legend on
the right) as a function of relative noise amplitude Γ and rescaled
dissipation rate ϕγ at three different average densities ϕ. The solid
lines indicate the theoretical transition, Eq. (14).
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Conclusions.—In summary, we have discussed a model
of inertial self-propelled particles with dissipative (align-
ing) interactions, inspired by GAP experiments [4] and
simulations [31]. We have derived the locally averaged
equations in the macroscopic (“hydrodynamic”) limit,
retaining also fluctuations of currents, Eq. (8). Those
macroscopic equations are predictive both for the study
of a phase diagram of stable and unstable phases and for the
amplitude of current fluctuations which are non-negligible
at finite sizes. The nonoverdamped dynamics adopted here
is relevant also for other kinds of active particles, e.g., birds
or insects, where inertia has proven to be crucial and a
derivation of macroscopic equations from microscopic
rules is lacking [7].
A key point in our results is the reduction of the

necessary ingredients—in the macroscopic equations—
for the existence of a disordered-swarming transition:
Indeed, we have shown that viscous and heat transports
are not required. A second key point is the relation between
this transition and the shear instability of the homogeneous
cooling state in granular gases [52]. Our results at zero
noise (Γ ¼ 0) suggest that they have the same nature, with
two differences: (i) In our approximation, shear viscosity is
zero; therefore, instability appears at any k, and (ii) in the
dilute limit, self-propulsion makes the (unstable) homo-
geneous state steady, as in the so-called Gaussian thermo-
stat or “steady state representation” [53].
Perspectives of future investigation include a study of the

stability of other phases and the introduction of diffusive
terms of transport (shear viscosity and heat conductivity). A
numerical integration of our hydrodynamic equations can
better elucidate the limits of validity of our equations,
clarifying if the observed stability of inhomogeneous (e.g.,
clustered) states at a high density is compatible or not with
our basic assumptions (e.g., molecular chaos or Gaussian
local velocity distribution). Finally, contact with the large
deviation theory [54–56] may foster future results on
macroscopic fluctuations in systems of active particles [36].
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