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We study topological defects in anisotropic ferromagnets with competing interactions near the Lifshitz
point. We show that Skyrmions and bimerons are stable in a large part of the phase diagram. We calculate
Skyrmion-Skyrmion and meron-meron interactions and show that Skyrmions attract each other and form
ring-shaped bound states in a zero magnetic field. At the Lifshitz point merons carrying a fractional
topological charge become deconfined. These results imply that unusual topological excitations may exist
in weakly frustrated magnets with conventional crystal lattices.
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Introduction.—Some 50 years ago Tony Skyrme identi-
fied topologically stable “hedgehoglike” configurations of
themeson fieldwith baryons, such as proton and neutron [1].
The ensuing theoretical work showed that Skyrmions indeed
provide a semiquantitative description of physical properties
of baryons and their interactions [2]. Multi-Skyrmion bound
states describe ground states and low-energy excitations of
atomic nuclei [3]. Periodic crystals of Skyrmions and half-
Skyrmions were used to model nuclear matter [4–6].
Two-dimensional analogs of Skyrme’s Skyrmions are

relevant topological excitations in many condensed matter
systems [7], such as quantum Hall magnets [8,9], spinor
Bose-Einstein condensates [10], superfluid 3He [11], chiral
liquid crystals [12], and chiralmagnets [13],whichprovide the
playground for experimental studies of Skyrmions. Skyrmion
crystals and isolated Skyrmions in chiral magnets can be
observed by neutron scattering and Lorentz microscopy
[14,15], and controlled by ultralow electric currents [16,17],
applied electric fields [18,19], and thermal gradients [20],
which opened a new active field of research on Skyrmion-
based magnetic memories [21–26]. Half-Skyrmions (or
merons) carying half-integer topological charge were also
discussed theoretically in the context of quantumHall systems
[27], bilayer graphene [28], and chiral magnets [29,30], but so
far they eluded experimental detection.
Here, we are interested in magnetic multi-Skyrmion and

multimeron configurations with a large topological charge,
Q. An example is the Skyrmion crystal in chiral magnets.
However, Skyrmions in the crystal can hardly be considered
as independent particlelike objects, since to a good approxi-
mation this state is a superposition of three spin spirals plus a
uniform magnetization [14]. Isolated Skyrmions appear
under an applied magnetic field that suppresses modulated
spiral and Skyrmion crystal phases and induces a collinear
ferromagnetic (FM) state. Skyrmions in chiral magnets repel
each other [31], so that multi-Skyrmion states are merely a
gas of elementary Skyrmions with Q ¼ �1.
It was recently suggested that Skyrmion crystals and

isolated Skyrmions can also exist in frustrated magnets

with conventional centrosymmetric lattices, where they
are stabilized by competing ferromagnetic and anti-
ferromagnetic (AFM) exchange interactions [32–34]. In
frustrated magnets, the Skyrmion-Skyrmion interaction
potential changes sign as a function of the distance
between Skyrmions, which makes possible formation of
Skyrmion clusters as well as rotationally symmetric
Skyrmions with the topological charge Q ¼ �2 [33].
We note that topological excitations in frustrated magnets

can be stable even in zero magnetic field. Consider a magnet
in which the degree of frustration described by the parameter
f that can bevaried, e.g., by an applied pressure or a chemical
substitution. The phase diagram of such magnets often
contains the so-called Lifshitz point (LP), f ¼ f�, which
separates the uniform FM state (f < f�) from periodically
modulated phases (f > f�). The behavior close to theLPwas
recently discussed in the context of Bose condensation of
multimagnon bound states in quantum low-dimensional
systems [35]. Skyrmions, which can be considered as bound
states of a large number of magnons, so far were studied in
the strongly frustrated regime (f > f�). In this Letter, we
focus on the “underfrustrated” side of the LP and show that
Skyrmions are stable in a large interval of f < f�. We show
that elementary Skyrmions attract each other and can form
bound states with an arbitrarily largeQ. Surprisingly, despite
the attraction, Skyrmions do not aggregate into clusters.
Instead, they form topological ring-shaped domain walls.
The aforementioned unusual multi-Q states appear in

easy-axis magnets. An easy-plane anisotropy forces
Skyrmion to transform into a bound pair of merons with
opposite vorticities, each carrying topological charge
Q ¼ 1

2
. The lowest-energy multimeron configuration is a

square lattice of merons with alternating vorticities. Our
results show that stability of Skyrmions and merons does
not require strong magnetic frustration, implying that these
exotic topological excitations with interesting physical
properties can exist in already known magnetic materials.
In addition, we find a number of striking similarities
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between multi-Q Skyrmions in condensed matter and
nuclear physics.
The model.—We consider classical spins on a square

lattice with competing exchange interactions and magnetic
anisotropy. The energy of the model is

E ¼ −J1
X
hi;ji

Si · Sj þ J2
X
hhi;jii

Si · Sj þ J3
X

hhhi;jiii
Si · Sj

þ K
2

X
i

ð1 − ðSzi Þ2Þ; ð1Þ

where Si is the spin of unit length at the lattice site i and the
first, second, and third terms describe, respectively, FM
nearest-neighbor and AFM second- and third-neighbor
exchange interactions (J1, J2, J3 > 0). The z axis is normal
to the lattice plane (the xy plane) andK is the strength of the
single-ion magnetic anisotropy of easy axis (K > 0) or easy
plane (K < 0) type. In what follows, energy is measured in
units of J1 ¼ 1 and distances are measured in units of the
lattice constant.
For slowly varying spin textures, Eq. (1) is equivalent to

the continuum model (see e.g., Ref. [36]),

E ¼ 1

2

Z
d2rfρð∂iSÞ2 þ b1½ð∂2

xSÞ2 þ ð∂2
ySÞ2�

þ b2∂2
xS · ∂2

ySþ Kð1 − S2zÞg; ð2Þ

where ρ¼J1−2J2−4J3, b1¼ð1=12Þð−J1þ2J2þ16J3Þ,
b2 ¼ J2 and i ¼ x, y. The first term in Eq. (2) is the
Oð3Þ nonlinear sigma model of an isotropic two-
dimensional ferromagnet. The spin stiffness ρ plays the
role of f� − f: in the FM state ρ > 0, at the Lifshitz point ρ
vanishes, and for ρ < 0, the system has either a spiral or a
columnar antiferromagnetic (CAF) ground state [37], as
shown in Fig. 1(a) [38]. The fourth-order terms in gradients
of S stabilize the spiral state and determine its wave vector
provided that b1 > 0 and b1 þ b2=2 > 0. These terms also
stabilize Skyrmions and merons in the FM state.

Skyrmions.—The nonlinear sigma model with ρ > 0
allows for analytic expression for Skyrmions with an
arbitrary Q found by Belavin and Polyakov [39]. In the
conformally invariant sigma model Skyrmions have no
internal length scale: the energy EQ of the Skyrmion with
topological charge Q is 4πρjQj independent of the
Skyrmion size.
The radius R of the Skyrmion with Q ¼ �1 (the

elementary Skyrmion) in frustrated magnets is determined
by the competition between the fourth-order terms favoring
infinite R and the easy-axis anisotropy that tends to shrink
the Skyrmion. The dimensional analysis shows that
R ∼ ½ðb=KÞ�1=4, where b is a linear combination of b1
and b2 [40]. Skyrmion stability requires ρ > 0 and b > 0.
In particular, Skyrmions in the Heisenberg model with the
nearest-neighbor interactions only are unstable. Figure 1(b)
shows the stability region of the elementary Skyrmion in
the J2 − K plane calculated numerically for J3 ¼ 0 [40].
Note that Skyrmions are stable quite far from the
LP J2 ¼ 1=2.
The Skyrmion shape is controlled by the parameters b1

and b2, as shown in Figs. 2(a)–(c), and the corresponding
contour plots of the topological charge density ρQðx; yÞ ¼
ð1=4πÞS · ½∂xS × ∂yS� [Figs. 2(d)–(f)]. The square-shaped
Skyrmions are observed close to the LPs ðJ2; J3Þ ¼
ð1=2; 0Þ and ðJ2; J3Þ ¼ ð0; 1=4Þ. For J2 > 2J3, the FM
phase transforms into the spiral state with the wave vector q
parallel to the square lattice axes, in which case the
Skyrmion has the shape shown in Figs. 2(a) and 2(d).
For J2 < 2J3, q is along the diagonals of squares and the
Skyrmion has the shape shown in Figs. 2(c) and 2(f).
An important difference between Skyrmions for positive

and negative spin stiffness is the form of the Skyrmion-
Skyrmion interaction potential U12ðrÞ. For ρ < 0, the
potential oscillates, which leads to repulsion or attraction
depending on the distance r between Skyrmions [33,34].

FIG. 1. (a) J2 − J3 phase diagram of the square lattice frustrated
magnet with a weak magnetic anisotropy. Stripes show the
stability region of the Q ¼ 1 Skyrmion in the FM phase, for
K ¼ 10−3. (b) J2 − K stability diagram of Skyrmions and
bimerons with Q ¼ 1, for J3 ¼ 0.

(a)

(d) (e) (f)

(b) (c)

FIG. 2. (a)–(c) Elementary Skyrmion at the points 1,2,3 on the
phase diagram Fig. 1(a). Arrows show in-plane spin components,
color indicates Sz. (d)–(f) The corresponding contour plots of the
topological density, ρQðx; yÞ.
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Similar considerations show that for ρ > 0, U12ðrÞ remains
positive and decreases monotonically at large r. This is also
the case for Skyrmions in chiral magnets which repel each
other [31,41] because they all have the same helicity angle
describing the direction of the in-plane spin components [7].
In easy-axis magnets with competing interactions, the
Skyrmion helicity is arbitrary and the repulsion for equal
helicities changes to attraction for opposite helicities [see
Fig. 3(a)].
Because of the attraction, a multi-Q Skyrmion has a

lower energy than Q elementary Skyrmions and can be
considered as their bound state. The fact that U12ðrÞ has
minimum at r ¼ r0 [see Fig. 3(a)] suggests that the
Skyrmion with a large Q occupies the area ∼Qπr20, so
that the Skyrmion radius R ∼ r0Q1=2. Surprisingly, this is
not the case: the topological charge and energy densities of
the multi-Q Skyrmion are concentrated in a ring of radius
R ∼ r0Q [see Figs. 4(a) and 4(c)].
Figure 3(b) shows that the energy per Skyrmion EQ=Q

decreases with increasing Q and approaches a constant,
because the width of the ring and the length of the ring
segment occupied by one Skyrmion become Q indepen-
dent. The energy of Skyrmion in the ring is significantly
lower than that of the elementary Skyrmion. This “mass
defect” drives the fusion of Skyrmions, which increases the
magnitude of the Skyrmion magnetic moment Mz ¼P

iðSzi − 1Þ < 0 counted from the positive magnetic

moment of the FM state: for Q elementary Skyrmions
Mz ∝ −Q, whereas for the ring with topological charge Q,
Mz ∝ −Q2. A magnetic field applied in the positive z
direction would lead to fission of multi-Q Skyrmions
into Skyrmions with smaller topological charges; see
Supplemental Material.
For Q ≫ 1, we can neglect the ring curvature and

consider a straight domain wall with the spiral spin
structure, S ¼ ( sin θðxÞ cos qy; sin θðxÞ sin qy; cos θðxÞ),
separating the Sz ¼ −1 FM state at x < 0 from the Sz ¼
þ1 FM state at x > 0. The length of the wall in the y
direction is Ly ¼ 2πR ¼ ð2πQ=qÞ. Using a variational
ansatz for the wall shape cos θðxÞ ¼ − tanhðϰxÞ, where
ϰ is the inverse domain wall width, we obtain

EQ

Q
¼ 2π

qϰ

�
ρðq2þϰ2Þþb1ðq4þϰ4Þþb2

3
q2ϰ2þK

�
: ð3Þ

Minimization with respect to q and κ gives κ ¼ jqj ¼
fK=½2b1 þ ð1=3Þb2�g1=4 and

EQ

jQj ¼ 4π

�
ρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

�
2b1 þ

1

3
b2

�s �
: ð4Þ

Note that the first term in Eq. (4) is the lower bound for the
energy of the multi-Q Skyrmion in the nonlinear sigma

(a)

(b)

FIG. 3. (a) Potential energy U12ðrÞ of interaction between two
Skyrmions as a function of distance between the centers of the
Skyrmions for equal helicities χ1 ¼ χ2 (blue line) and for
opposite helicities χ1 − χ2 ¼ π (red line). (b) Energy per Sky-
rmion EQ=Q in the Skyrmion ring. The calculations were
preformed for J2 ¼ 0.2, J3 ¼ 0.149, and K ¼ 0.01.
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FIG. 4. (a) The spin configuration of the Skyrmion ring with
Q ¼ −6 in the frustrated magnet with an easy-axis anisotropy
K ¼ 0.01 and (c) the corresponding topological charge density
distribution ρQðx; yÞ. (b) A meron cluster with a square lattice of
vortices and antivortices minimizing energy for topological
charge Q ¼ −8 and the easy-plane anisotropy K ¼ −0.01;
(d) the corresponsing ρQðx; yÞ. Other parameters of these
simulations are J2 ¼ 0.2 and ρ ¼ 3 × 10−3.
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model [39] and that ϰ, q and EQ=jQj are indeed indepen-
dent ofQ. The domain wall stability requires 6b1 þ b2 > 0
(or 4J2 þ 16J3 > J1) and this result can be shown to be
independent of the orientation of the wall with respect to
the crystal axes. The binding energy makes multi-Q
Skyrmions more stable than elementary Skyrmions [40].
Merons.—So far we discussed magnets with an easy-axis

anisotropy. For an easy-plane anisotropy (K < 0), the
topological defect with Q ¼ 1 is a bound state of vortex
and antivortex (see Fig. 5). The sign of the out-of-plane
magnetization in the core of the vortex is opposite to that in
the antivortex core, so that each half of the Skyrmion, called
meron, has Q ¼ 1

2
.

The emergence of vortices and antivortices is related to
the spontaneous breaking of Oð2Þ rotational symmetry by
the uniform in-plane magnetization. The bimeron configu-
ration in the FM state with Sx ¼ þ1 can, to a good
approximation, be obtained from the Skyrmion configura-
tion for the Sz ¼ þ1 state by π=2 rotation around the y axis:
ðSx; Sy; SzÞ → ðSz; Sy;−SxÞ, which explains the similarity
between the stability diagrams for Skyrmions and meron
pairs in the J2 − J3 and J2 − K planes [Figs. 1(a) and 1(b)
and Fig. 2 of the Supplemental Material).
Near a LP the distance between merons is large giving

rise to two distinct peaks in the distribution of topological
charge density [Figs. 5 (a), 5(d), 5(c), and 5(f)]. The
fractionalization of Skyrmion occurs because the two-
dimensional Coulomb potential that confines vortex to
an antivortex [42],

UCðrÞ ¼ 2πρ lnðr=r0Þ; ð5Þ

r0 being the meron radius, vanishes at the LP ρ ¼ 0.

Figure 6(a) shows that at zero temperature the deconfine-
ment of merons is incomplete: at the LP the optimal
distance between merons R12 remains finite, because the
meron-meron interaction energy U12ðrÞ has a minimum
even at ρ ¼ 0 [Figs. 6(b) and 6(c)]. The bimeron molecules
will, however, dissociate at T ≠ 0. Metastable Skyrmions
and their bound states exist also at nonzero temperatures
and are subjected to Brownian motion [43].
At large distances bimerons interact via two-dimensional

dipole-dipole interactions [45] resulting in formation of
multimeron bound states. For Q ≫ 1, the minimal-energy
configuration is the square lattice formed by merons
[Figs. 4(c) and 4(d)], analogous to the simple cubic lattice
of half-Skyrmions in nuclear physics [6].
Discussion and conclusions.—We showed that metasta-

ble Skyrmions and merons can exist in two-dimensional
ferromagnets with conventional centrosymmetric lattices.
Magnetic frustration required for stabilization of these
topological excitations is considerably weaker than the
one that destabilizes the FM state. Skyrmions in easy-axis
magnets attract each other and in absence of magnetic field
form long lines or rings facilitating their observation by
Lorentz transmission electron microscopy [46] and spin-
polarized scanning tunnelling microscopy [47]. Skyrmions
can be created by injecting a vertical spin-polarized electric
current perpendicular to the plane of a frustrated magnet
film or alternatively by using thermal annealing (Kibble-
Zureck mechanism [48]) or local heating [49]. The collapse
of multi-Skyrmion bound states in an applied magnetic
field can be observed in measurements of the discretized
Hall resistivity in nanostructured Hall bars [50].
Skyrmion bound stateswithQ ≫ 1 resemblehard bubbles

in thin ferromagnetic films with 2ðQ − 1Þ Bloch lines [51].
However, hard bubbles do not form because of attraction
between the elementary bubbles and, in general, they do not
minimize energy for a given value of topological charge.

(a) (b) (c)

(d) (e) (f)

FIG. 5. (a)–(c) Deconfinement of meron pairs in a frustrated
magnet with an easy-plane anisotropy K < 0 for J2 and J3 at the
points (1,2,3) on the phase diagram in Fig. 1(a). (d)–(f) Topo-
logical density ρQ for the spin configurations in (a)–(c). In panels
(a),(d) and (c),(f) the system is close to the FM-spiral phase
boundary, which results in the topological “fractionalization,”
i.e., a spatial separation of merons.
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FIG. 6. (a) Optimal distance between the centers of merons R12

vs spin stiffness. R12 increases near the LP ρ ¼ 0 resulting in a
fractionalization of topological charge. (b) The meron-meron
interaction potential U12 vs the distance between merons.
(c) The “non-Coulomb” part of the interaction potential U12 −
UC vs meron-meron distance. The model parameters are K ¼
−5 × 10−3 and J3 ¼ 0.1. The minimum of the potential energy
curves is shifted to zero.
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They are also much bigger in size and require both applied
magnetic field and strong perpendicular anisotropy.
Bound states of magnetic Skyrmions bare similarity to

Skyrmions with large baryonic numbers modeling nuclei. In
the chiral limit of vanishing pion mass the minimal energy
solutions of the Skyrmemodel are hollow polyhedrawith the
baryon density concentrated in a relatively thin nuclear
sphere [3], resembling the topological rings [Figs. 4(a)
and 4(c)]. The nonzero pion mass leads to a collapse of
the nuclear sphere, similar to the collapse of the multi-Q
Skyrmions in amagnetic field. Themagnetization patterns in
the topological ring and bimeron resemble the distribution of
orbital momentum of Cooper pairs in topological defects in
the A phase of superfluid helium-3 (cf. Fig. 1 in [52]).
Our results are directly relevant for square-lattice ferro-

magnets [53], and, qualitatively, they hold for other lattice
types including layered antiferromagnets with a weak AFM
coupling between FM layers. In particular, bimerons can
exist in the collinear phase of the easy-plane triangular
antiferromagnet NiBr2 [54]. Pressure and chemical substi-
tutions can be used to tune frustrated magnets across the
Lifshitz point.
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fruitful discussions and suggestions. M.M. acknowledges
the hospitality of UNSW and the FOM for financial
support.
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