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It is shown that the enthalpy of any close packed structure for a given element can be characterized as a
linear expansion in a set of continuous variables αn, which describe the stacking configuration. This
enables us to represent the infinite, discrete set of stacking sequences within a finite, continuous space of
the expansion parameters Hn. These Hn determine the stable structure and vary continuously in the
thermodynamic space of pressure, temperature, or composition. The continuity of both spaces means that
only transformations between stable structures adjacent in the Hn space are possible, giving the model
predictive as well as descriptive ability. We calculate the Hn using density functional theory (DFT)
and interatomic potentials for a range of materials. Some striking results are found: e.g., the Lennard-Jones
potential model has 11 possible stable structures and over 50 phase transitions as a function of cutoff range.
The very different phase diagrams of Sc, Tl, Y, and the lanthanides are understood within a
single theory. We find that the widely reported 9R-fcc transition is not allowed in equilibrium
thermodynamics, and in cases where it has been reported in experiments (Li, Na), we show that DFT
theory is also unable to predict it.
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In 1611, Kepler suggested that stackings of triangular
layers was the most efficient way to pack hard spheres [1].
This conjecture was only recently proved [2].
Many elements crystallize in close packed crystal

structures, but the concept of “close packed” is not part
of crystallographic categorization. This is because there
are an infinite number of Keplerian stacking arrange-
ments with equal packing density, spanning a wide range
of space group symmetries. Most observed structures
have short repeat sequences such as face-centered cubic
(fcc) or hexagonal close packed (hcp), but there is no
general theory to explain why these should have the
lowest energy.
Predicting the stable crystal structure for a material is a

longstanding challenge in condensed matter physics. One
underlying reason is that crystal structures are defined by
discrete symmetry groups and integer numbers of atoms per
unit cell. Aside from the atomic positions themselves, there
are no continuous variables which cover the entire space of
possibilities; thus, we are searching for a minimum in a
discontinuous space.
Among close packed structures, only fcc has close

packing enforced by symmetry. For all other stackings,
there is an “ideal” ratio between interlayer spacing and
interatomic separation (c=a ¼ ffiffiffiffiffiffiffiffi

2=3
p

) which gives close
packing. Generally, materials adopting structures within a
few percent of ideal are regarded as close packed.
Stacking sequences are typically defined as a series of

layers labeled A, B, and C with atoms positioned at
0aþ 0b; 1

3
aþ 1

3
b; and 2

3
aþ 2

3
b, respectively, where a

and b are the in-plane lattice vectors. This ABC notation is
not unique: a more compact notation [3] uses h for layers

with identical neighbors (ABA), f for those with different
(ABC). For examples see Table I.
The most widely used model for atomistic modeling is

the Lennard-Jones potential, which describes the van der
Waals bonding of inert gases. It has hcp as the most stable
structure at low temperature, transforming to fcc at high
temperature [4].
More sophisticated modeling of electronic structure

using density functional theory (DFT) can be applied
across the periodic table, and gives quantitative agreement
with experiment [5] although it is impossible to check all
possible stacking sequences.
In this Letter we show that the energies of the infinity of

stacking sequences can be represented by a convergent
series, and that phase boundaries between some pairs of
crystal structures cannot occur. We demonstrate the extraor-
dinary sensitivity of the Lennard-Jones phase diagram to
the potential cutoff. We show that deviations from ideal c=a
ratios are correlated with stability. We also investigate the

TABLE I. Representation of various structures in terms of basal
stacking in the different notations. Note that ABC and ACB
represent the same structure, fcc, and that structures are not
uniquely defined by α2, α3.

Name ABC hf Minimal α2 α3

hcp AB hh h 1 0
fcc ABC fff f 0 1
fcc ACB fff f 0 1
dhcp ABCB hfhf hf 1=2 0

ABCAB hfffh hfffh 2=5 2=5
9R ABACACBCB hhfhhfhhf hhf 2=3 0
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role of pressure and uncover some deep-seated inadequa-
cies in interatomic potentials.
To define the stacking sequence with periodicity M, we

introduce a set of parameters αn

αn ¼
XM
i¼1

δi;iþn

M
; ð1Þ

where δi;iþn is 1 when the i and iþ n layers have the same
ABC symbol, and 0 otherwise. Physically, αn can be thought
of as the fraction of the atomic positionsRi forwhich there is
another atom at Ri þ nc, where c is the interlayer separa-
tion. As M → ∞, or for an arbitrary density of stacking
faults, the αs become continuous variables.
The set of α’s up to αM univocally describes any possible

stacking with an M fold or fewer periodicity. All transla-
tionally, rotationally or reflectionally equivalent stackings
have the same unique set of αn, unlike the ABC and hf
notations which have considerable redundancy. Trivially,
α0 ¼ 1 and α1 ¼ 0 for all close packed structures. Only
certain ranges of αns correspond to physically realizable
structures (see Fig. 1).
We used the CASTEP DFT package [6] to examine a wide

selection of elements known to adopt close packed struc-
tures. Well-converged energies for various stackings and
pressures were determined using the Perdew-Burke-
Ernzerhof exchange-correlation functional [7]. In addition
to the DFT calculations, we calculate energies of the same
structure set using a number of interatomic potentials, both
pairwise and many-body, which were fitted to represent the
same materials. Our structure set consists of all 43 possible
stacking sequences for up to 10 atomic layer repeats in the
ABC notation (cf. Table I) excluding redundant strings (i.e.,
those with identical αn). Calculations are performed start-
ing from hexagonal style unit cells with cell angles 90°, 90°,
60°; internal coordinates and lattice parameters were fully
relaxed and double checked to ensure that each structure
remained in its initial metastable state, with each atom in

the structure retaining 12-fold coordination and undergoing
only small distortion from close packing.
Using these results, each material is characterized by

parameters Hn obtained by a least squares fit to the 43
calculated enthalpies assuming a linear dependence on αn,

H ¼ H0 þ
X
n¼2

Hnαn: ð2Þ

Every material is, therefore, represented as a point in an N-
dimensional Hn space, and every point in the Hn space has
an associated most-stable stacking structure calculated by
minimizing Eq. (2) with respect to αn. For example,
consider the summation in Eq. (2) up to only n ¼ 3, the
enthalpy varies linearly with α2 and α3, and it follows that
the most stable structure must be located at a corner of the
triangle of physically possible states shown in Fig. 1(a),
allowing only fcc, hcp, or dhcp. More complex structures
may be stable if considering H4 and higher terms.
The H2 and H3 values for a range of materials and

pressures are shown in Fig. 2(a). The residuals in the fit to
DFT data are of order tenths of meV per atom, about 1% of
the enthalpy differences between structures. For Eq. (2) to
be useful it must be rapidly convergent, and in Fig. 1(b) we
show that the terms do indeed decay rapidly with n.
Typically, the H2 and H3 contributions are dominant.
The key to the usefulness of this result is that we have

transformed the discrete representation (ABC or hf) of the
crystal structure to a continuous representation (αn). The
phase stability regions in the associated Hn space are
material independent, and any stacking sequence will have
some region of stability if N is large enough [9].
Geometrically, these regions are hyperpyramids whichmeet
at the origin. We thus predict that transformations between
phases whose stability regions are nonadjacent in Hn space
(Fig. 3), such as fcc and 9R, are not thermodynamically
possible in any system if the Hn representation converges.
If we change thermodynamic parameters continuously,

the Hi change continuously, tracing a path through the Hn
space. This can be evaluated using, e.g., DFT calculations
at different pressures. This enables us to anticipate phase
transitions arising from continuously changing thermody-
namic variables such as temperature, pressure, or compo-
sition whenever this path crosses from the stability region
of one phase to another. Figure 2(a) shows such trajectories
projected into (H2, H3) subspace for pressures up to
20 GPa. The clustering of elements’ H2 and H3 values
and the similarities of their pressure dependence corre-
sponds to periodic table groupings, indicating an electronic
origin of the observed properties.
Many further inferences can be drawn from theHn space;

for example, Group 11metals lie close to the origin, and low
values of Hn suggest changes in α are not energetically
costly. As a consequence, stacking faults (incremental
change in αn) have low energy, meaning that dislocations

H
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FIG. 1. (left) Physically realizable stackings projected onto the
α2-α3 plane. Configurations for up to 25 atomic-layer repeats are
shown in red. Blue points indicate the 43 structures used in our
calculations. (right) Tukay box plots of normalized enthalpy H0

n
vs n showing the rapid convergence of Eq. (2). Data are taken
from DFT calculations across all elements and pressures. The
structure-independent H0 are omitted. The normalization is
defined by H0

n ¼ ðjHnj=
P

9
i¼2 jHijÞ.
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can glide easily and Group 11 materials are soft and
malleable.
Yttrium is a particularly interesting case, its pressure

trajectory moves it from hcp stability into the dhcp phase
(see Fig. 2). Experimentally [10,11], yttrium does this via an
intermediate Sm-type phase, also called 9R, which consists
of 9 layers: ABACACBCB (Table I). 9R lies on the boundary
of the hcp phasewith the dhcp phase in Fig. 1 and its stability
wedge exists only for H4 > 0. Figure 3 shows that Y has
H4 > 0, so the 9R region must be traversed as an inter-
mediate phase between hcp and dhcp, as observed.
Qualitatively, we find that yttrium transforms from hcp

to 9R at 4 GPa, then to dhcp at around 10 GPa (Fig. 3).
These numbers agree with other DFT calculations [12,13]
but are lower than observed experimental pressures, which
might be due to hysteresis since the experiments were done
with increasing pressure only.
Scandium and thallium appear to behave similarly to

yttrium (see Supplemental Material [14]), but Sc is known

to transform to a complex non-close-packed structure at a
lower pressure thanwhere its trajectorywould cross the hcp-
dhcp boundary in Fig. 2(a). The trajectory for thallium goes
towards the transition line with pressure, but H4 < 0 so it
passes below the origin and hcp-fcc is the only observed
transition.
The 9R and fcc structures are not adjacent in Fig 1.

Therefore, no thermodynamic phase boundary can exist
between 9R and fcc. This prohibition of pressure-driven
transitions in any system is curious because such transitions
have been reported in lithium and sodium. However, Li 9R
was very recently proved not to be stable [15], and we find
both Li and Na to be more stable in fcc than 9R at all
pressures. By contrast, the 9R phase is adjacent to hcp and
dhcp, (Fig. 1), so its presence in the samarium phase
diagram and in the lanthanide sequence dhcp=9R=hcp=fcc
[16,17] are also consistent with the model.
Figure 4 shows that the c=a ratio is strongly correlated

with a material’s preference for the hcp or fcc phase (H2).
Typically, hcp materials have c=a <

ffiffiffiffiffiffiffiffi
2=3

p
, whereas meta-

stable structures of fcc materials have larger than ideal c=a.
Curiously, the primary effect of pressure is to move c=a
towards ideal, irrespective of the change inH2 (Sc being an
exception).
The H2 and H3 values for a selection of interatomic

potentials are displayed alongside the first principles data
(Fig. 2). We used the Lennard Jones potential, a set of
embedded atom and Finnis-Sinclair potentials [8,18–24],
the empirical oscillating potential [25], and Pettifor’s three
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FIG. 3. (top) DFT calculated enthalpies for phases of yttrium
with pressure. (bottom) FittedHn values with pressure. The insets
are colored to show the stable phase for given (H2, H3) using the
same color scheme; when H4 is positive (left), all six phases
appear, for negative H4 (right) only fcc, hcp, and dhcp are
possible. The line shows changing values of (H2, H3) with
pressure. Because H4 for Y is also pressure dependent, this is a
projection onto the plane of constant H4 which it intersects: the
line is colored green when the H4 > 0 and yellow when H4 < 0
to show that it passes through the wedge of hhf stability, but not
hff. Small dots indicate 10 GPa intervals.
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FIG. 2. (a) Figure showing close packed materials plotted
against their ðH2; H3Þ. Lines show the movement under pressure
according to DFT calculations. Blue dots show the position of
interatomic potentials at equilibrium volume. The outlying
interatomic potential is Fortini’s Ru EAM potential [8]. The
regions of fcc, hcp, and dhcp stability shown assume that H4 and
higher terms are zero. (b) Expanded view of the position of
interatomic potentials in the region of H2-H3 space bound by the
rectangle in (a). The lines again show the effects of compression.
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term oscillating potential for Al, Na, and Mg [26,27]
as implemented in the LAMMPS code [28]. Remarkably,
these potentials almost all fall into a narrow region of
Fig. 2(a), shown expanded in Fig. 2(b), the spread on H3

being some 2 orders of magnitude smaller than for the DFT
calculations.
This weak dependence of enthalpy on stacking

sequence implies low basal-plane stacking faults, which
leads to systematic erroneously low barriers to basal slip.
Furthermore, the phase stability is highly sensitive to
pressure and to the details of the empirical potentials.
We find truly remarkable results for the Lennard Jones

6-12 forcefield (Fig 5). This most widely used of potentials
is in practice invariably applied with truncation [28], at
some range rcut, i.e.,

ϕðrÞ ¼ 4ϵ

��
σ

r

�
12

−
�
σ

r

�
6
�
Hðrcut − rÞ; ð3Þ

with H the Heaviside function and ϵ and σ defining length
and energy units. As rcut → ∞, H2 converges to a value of
around−0.0009ϵ, which accounts for most of the difference
in energy between the fcc and hcp phases. However, the
dependence of theHn values on rcut is erratic; discontinuities
occur as new coordination shells come within range, with
even H2 changing sign five times. This means that a large
number of minimum enthalpy phases are observed as a
function of the cutoff, as indicated in Fig. 5. An alternative
truncation with the energy and force shifted to remove the
discontinuities at the cutoff distance, is better behaved, but
still undergoes five transformations with increasing cutoff,
with regions of fcc, hcp, and dhcp phases (see Supplemental
Material [14]).
The interatomic potentials exhibit more pressure induced

phase transitions than theDFT calculations.We propose that

this is because they have a fixed characteristic length scale
associated with the zero pressure fitting data. In reality, the
characteristic length for metallic interactions is the Fermi
wavelength, which reduces with pressure. The long-ranged
oscillations of Pettifor potentials scalewith the Fermi vector,
meaning that the position of shells of neighboring atoms is
unchanged relative to the maxima and minima of the
potential [27]. Consequently, Pettifor potentials show fewer
pressure-induced transitions than other models.
There are similaritieswith the long-ranged 1D Isingmodel

[9,29,30], in which possible stackings (here h and f) are
represented by spins [31–35]. In that case H2 maps to the
field, while the Ising interaction terms are linear combina-
tions of our Hi. The Ising representation turns out to be less
useful because it converges slowly. To understand why,
consider the strings ABACB and ABABC, which give .hff.
and .hhf. for the Ising representation. In the first case the next
neighbor hf interaction is between unlike (BC) layers, in the
second between like (BB) layers. In the physical system, the
set of separations between atoms in B-C is different from
B-B, and the associated enthalpy differences are well
represented by Hi. In the Ising picture, this difference
emerges fromcorrelations between longer range interactions,
which have an unintuitive mathematical origin.
In summary, we showed that different stackings of

monatomic close packed metals can be uniquely described
by a set of structure-specific continuous variables αn, and
that an enthalpy expansion in these quantities leads to a

FIG. 4. Correlation between the stability of hcp over fcc (H2)
and the divergence from the ideal close packed ratio of

ðc=aÞ0 ¼
ffiffi
2
3

q
. The effect of pressure up to 20 GPa is again

shown as paths colored to correspond to the relative volume.
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FIG. 5. Zero-pressure H2, H3, and H4 for the Lennard-Jones
potential as a function of the interaction range. The diagonal
dotted line demonstrates the regular introduction of newHi series
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ribbons at the top of the graph shows the minimum enthalpy
structure at each value of the cutoff, the lower shows the
minimum enthalpy structure predicted by Eq. (2) using the Hn
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structures described using the hf notation as follows: red, f;
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brown, hhhhfff; black, hhffhhf.
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multidimensional Hn space containing regions of stability
for all stackings. The material-specific fitted expansion
coefficients Hn converge quickly with n, and allow the
stablest structure to be determined. Changes in Hn with
pressure allow us to identify phase transformations.
Using the model, we predict that a boundary between fcc

and 9R (α−Sm-type) phases cannot exist in any phase
diagram, requiring a reassessment of stability of the reported
9R in Na and Li, but not in the Sm prototype. We reproduce
and interpret the phase transformation sequence inY, Sc, and
Tl.We identify excess polytypism as problematic for simple
interatomic potentials in general, and demonstrate an
unprecedented amount of polytypism in the Lennard-
Jones system.
Data from the calculation are available from the

Edinburgh data store [36].
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Note added.—Recently, we became aware of a forthcoming
paper which also investigates cutoff effects in Lennard-
Jonesium [37].
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