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We investigate the influence of a strong laser electromagnetic field on the α-decay rate by using the
Hennenberger frame of reference. We introduce an adimensional parameter D ¼ S0=R0, where R0 is the

geometrical nuclear radius and S0 ∼
ffiffi
I

p
=ω2 is a length parameter depending on the laser intensity I and

frequency ω. We show that the barrier penetrability has a strong increase for intensities corresponding to
D > Dcrit ¼ 1, due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for
spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier
penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude
at D ∼ 3Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an
additional order of magnitude for a quadrupole deformation β2 ∼ 0.3. The influence of the electromagnetic
field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.
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The α-decay process is governed by the Geiger-Nuttall
law [1] expressing a linear dependence,

log10 T1=2 ¼ aχ þ bðZÞ; ð1Þ

between the logarithm of the half life and the Coulomb-
Sommerfeld parameter

χ ¼ 4Ze2

ℏvα
; ð2Þ

where Z is the charge of the daughter nucleus, and vα ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Qα=Mα

p
the asymptotic α-daughter relative velocity,

expressed in terms of the emission energy (Q value)Qα and
reduced mass Mα. This dependence was explained a long
time ago in terms of the quantum-mechanical penetration
through the Coulomb barrier surrounding the nuclear field
by a preformed α-particle [2,3]. Later on, different models
tried to explain the process of the α-particle formation on
the nuclear surface within the R-matrix theory [4] or the
fissionlike approach [5]. Let us mention that α clustering
plays an important role in light nuclei [6]. A useful tool to
investigate the structure of heavy and superheavy nuclei is
the α decay to excited states [7]. Modern laser facilities
allow the probing of subatomic structures by using strong
electromagnetic fields [8–12]. Several papers have inves-
tigated the role of laser pulses on the Coulomb barrier
governing the α-decay process [13–16]. In Ref. [17], a
semiclassical correction to the α-decay rate in an oscillating
electromagnetic field is obtained. The relative change in
the α-decay rate is calculated as a function of the nuclear

charge, Q value, and the laser-radiation intensity. In
Refs. [18,19], the discussion treats the manner in which
the α-decay dynamics in a spherical nucleus is modified
by a linearly polarized ultraintense laser field by using a
quantum time-dependent formalism. The wave-packet
dynamics was determined for various laser intensities for
continuous waves and for sequences of pulses, leading to
an enhancement of the tunneling probability.
The purpose of this Letter is to demonstrate that the

standard Geiger-Nuttall law (1) becomes shifted by a term
depending on intensity and frequency of the laser field, as
well as on the nuclear deformation.
The time-dependent Schrödinger equation describing the

relative motion of an α-particle inside the Coulomb barrier
is given by

iℏ
∂Ψðr;tÞ

∂t ¼
�

1

2Mα

�
P−

eeff
c
AðtÞ

�
2

−VðrÞ
�
Ψðr;tÞ; ð3Þ

where AðtÞ is the time-dependent magnetic vector poten-
tial, eeff ¼ eZeff ¼ eð2A − 4ZÞ=ðAþ 4Þ is the effective
charge [18], and VðrÞ is the Coulomb potential. By using
the unitary Hennenberger transformation [13]

Ω ¼ exp

�
i
ℏ

Z
t

−∞
HintðτÞdτ

�
; ð4Þ

with

HintðtÞ ¼ −
eeff
Mαc

APþ e2eff
2Mαc2

A2; ð5Þ
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being the perturbation Hamiltonian, the new wave function
Φ ¼ ΩΨ satisfies the following equation:

iℏ
∂Φðr; tÞ

∂t ¼
�

1

2Mα
P2 − V(r − SðtÞ)

�
Φðr; tÞ; ð6Þ

where we introduced the classical trajectory

SðtÞ ¼ eeff
Mαc

Z
t

−∞
AðτÞdτ: ð7Þ

This time-dependent potential can be expanded in a
Fourier basis [15]. For the present discussion the static
component (the Kramers-Hennenberger approach) is the
most important part due to the fact that ℏω ∼ 10−4 MeV
≪ Qα ∼ 5 MeV. Although the new system of reference is
noninertial, its energy (< 1 eV) is much less than the Q
value. Moreover, one can show that the decay width
remains unchanged in the static approach after this unitary
transformation. The static component

V0ðrÞ ¼
1

T

Z
T

0

V(r − SðtÞ)dt ð8Þ

for a spherical Coulomb potential

Vðr − SðtÞÞ ¼ 2Ze2

jr − SðtÞj ; ð9Þ

can be written as follows:

V0ðr;Θ; S0Þ ¼
2Ze2

r
ξðr;Θ; S0Þ; ð10Þ

where Θ is the angle between the α-emission direction and
incidence direction of the beam and S0 is the amplitude of a
linearly polarized beam,

SðωtÞ ¼ ezS0 sinωt: ð11Þ

Using the integration variable x ¼ ωt, we obtain for the
screening function the following expression:

ξðr;Θ; S0Þ ¼
1

2π

Z
2π

0

dx�
1 − 2

SðxÞ
r cosΘþ S2ðxÞ

r2

�
1=2 ; ð12Þ

leading to a deformation of the Coulomb field, and there-
fore to an anisotropic character of the α-emission process
[20]. By using the relation connecting the intensity of the
beam and the electric field magnitude [21], one gets

S0 ¼ Zeff

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πℏαI

p

Mαω
2

∼ 8

ffiffiffiffiffiffiffiffiffi
I

1020

r �
100

ℏω

�
2

fm; ð13Þ

where α is the fine-structure constant, I is given in W=cm2,
and ℏω in eV. This approach was used to predict a change
of the ionization potential for H atom in a strong laser field
when the length amplitude S0 becomes comparable to
the Bohr radius [13]. Similarly, we expect a relevant change
of the decay width in our case as soon as S0 becomes
comparable to the nuclear radius R0. By defining the
adimensional parameter D≡ S0=R0 ∼

ffiffi
I

p
=ω2, one obtains

for the threshold intensity, where D ∼ 1, a value I ∼
1020 W=cm2 for ℏω ¼ 100 eV and I ∼ 1022 W=cm2 for
ℏω ¼ 300 eV. Let us mention that the results become
analytical only if the monopole contribution is taken into
account,

ξðr;S0Þ¼ ξ

�
r
S0

�
¼1; r≥S0

¼ 1

4π

	
8arcsin

r
S0

−8
r
S0

log10

�
tan

�
1

2
arcsin

r
S0

��

;

r<S0: ð14Þ

The α-decay half-life is inversely proportional to the barrier
penetrability P and reduced width γ2α,

T1=2 ¼
ℏln2

2PðRÞγ2αðRÞ
: ð15Þ

The product in the denominator does not depend on the
radius R. The reduced width at a given radius has a smooth
behavior within 1 order of magnitude along the periodic
table. Therefore, the main contribution in the dependence
between the half-life and Coulomb-Sommerfeld parameter
is given by the penetrability [5]. The penetrability can be
expressed within the semiclassical approach in terms of the
action integral,

PðΘÞ¼ exp

 
−2
Z

R1ðΘÞ

Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mα

ℏ2
½V0ðr;ΘÞ−Qα�

r
dr

!
; ð16Þ

where Rc ¼ R0 þ Rα ¼ 1.2ðA1=3 þ 41=3Þ is the geometrical
touching radius and R1ðΘÞ gives the external turning point.
The total penetrability is then given by [5]

P ¼ 1

2

Z
π

0

PðΘÞ sinΘdΘ: ð17Þ

In the case of an axially deformed nucleus, the important
contribution aside the monopole one is given by the
quadrupole term

VðrÞ ¼ Vðr; θÞ ¼ 2Ze2

r

�
1þ 1

10r4
ða2 − c2Þð3z2 − r2Þ

�
;

ð18Þ
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where a and c are the two different semiaxes of the
spheroid and θ is the angle of r with respect to the nuclear
symmetry axis. It turns out that the relation (10) can be
generalized for a deformed potential,

Vðr; θ;Θ; S0Þ ¼
2Ze2

r
ξd; ð19Þ

in terms of a deformed screening function

ξd ¼
�
ξþ 1

10r4
ða2 − c2Þðξð1Þq − r2ξð2Þq Þ

�
; ð20Þ

where ξ is defined by Eq. (12) (depending now on θ − Θ)
and

ξð1Þq ¼ 1

2π

Z
2π

0

3r2½cos θ − S0ðx; rÞ cosΘ�2dx
½1 − 2S0ðx; rÞ cosðθ − ΘÞ þ S20ðx; rÞ�5=2

ξð2Þq ¼ 1

2π

Z
2π

0

dx

½1 − 2S0ðx; rÞ cosðθ − ΘÞ þ S20ðx; rÞ�3=2

S0ðx; rÞ≡ S0 sin x
r

: ð21Þ

The angular penetrability is dependent on both the rðθÞ and
SðΘÞ directions,

Pðθ;ΘÞ ¼ exp

 
−2
Z

R1ðΘÞ

RcðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mα

ℏ2
½Vðr; θ;ΘÞ −Qα�

r
dr

!
;

ð22Þ

where RcðθÞ ¼ R0½1þ β2Y20ðθÞ� þ Rα. The total pen-
etrability becomes

P ¼ 1

4

Z
π

0

sin θdθ
Z

π

0

Pðθ;ΘÞ sinΘdΘ: ð23Þ

In Fig. 1, we plotted the angular penetrability given by
Eq. (16) normalized to its maximal value (in the logarith-
mic scale) versus the angle between the α particle and laser
beamΘ forD ¼ 1=

ffiffiffiffiffi
10

p
(stars),D ¼ 1 (triangles), andD ¼ffiffiffiffiffi

10
p

(circles). In spite of the fact that we considered the
spherical emitter 212Po, the anisotropy strongly increases
from a factor less than 2 for D ¼ 1=

ffiffiffiffiffi
10

p
up to more than 6

orders of magnitude for D ¼ ffiffiffiffiffi
10

p
, with α emission being

practically concentrated in the equatorial directionΘ ∼ 90°.
In Fig. 2, we plotted the logarithm of the penetrability

(23) versus D ¼ S0=R0 for the deformed emitter 232Pu. We
mention a behavior similar to that in Fig. 1, namely, that the
penetrability has a weak dependence on the laser intensity
for D < 1 and a strong increase in the region D > 1. In the
same plot we considered several values of the quadrupole
deformation. Notice that for β2 ¼ 0.3 one obtains an
overall increase of about 1 order of magnitude. Let us

mention that the influence of the preformation probability
γ2αðRÞ on the classical trajectory (7), and therefore on the
half-life (15), still remains an open question. The real
experimental dependence of the half-life on the laser
intensity will provide information on this effect.
We analyzed the penetrability along two isotope chains,

one for spherical and the other for deformed nuclei. In
Fig. 3, we investigated the chain of quasispherical Po
isotopes with A ¼ 192–218. With crosses, we plotted the
standard Geiger-Nuttall dependence between the logarithm
of the penetrability and Coulomb-Sommerfeld parameter
(2), corresponding to the absence of the external field. With
circles we plotted the same dependence, but considered
only the spherical part of the laser field withD ¼ ffiffiffiffiffi

10
p

, thus
giving an increase of about 2 orders of magnitude. With
triangles we considered the full electromagnetic field.
We notice a very strong influence of about 6 orders of
magnitude. In all cases, the fitting red lines in terms of the
standard Coulomb-Sommerfed parameter are practically
parallel.
In Fig. 4, we investigated the Geiger-Nuttall law for

deformed Pu isotopes with A ¼ 232–244 and quadrupole
deformations β2 ¼ 0.21–0.23 [22], in the absence of the
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FIG. 1. Logarithm of the penetrability given by Eq. (16)
normalized to its maximal value versus the angle between the
emitted particle and laser beam Θ for D ¼ S0=R0 ¼ 1=
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(stars), D ¼ 1 (triangles), and D ¼ ffiffiffiffiffi

10
p

(circles) from 212Po.

0 0.5 1 1.5 2 2.5 3

0/R0D = S

25−

24−

23−

22−

21−

20−

19−

18−

P
10

Lo
g

 = 0.0
2

β
 = 0.1

2
β

 = 0.2
2

β
 = 0.3

2
β
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laser field (crosses) and by considering the full contribution
of the external field with D ¼ ffiffiffiffiffi

10
p

(triangles). One sees
that the laser field induces a correction of about 6 orders of
magnitude with respect to the dependence in the absence of
the laser field, which corresponds to deformed nuclei.
In this way, the Geiger-Nuttall law becomes modified in

the presence of a strong electromagnetic field

log10 T1=2 ¼ aχ þ bðZÞ þ cðS0; β2Þ; ð24Þ

by a new shifting term depending on the parameter S0 given
by Eq. (13), as well as on the nuclear deformation.
In Ref. [17] the static Coulomb barrier was corrected

by an oscillating dipole electric field instead of the exact
Eq. (3). As a consequence, its amplitude F ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

8πI=c
p

does
not depend on laser frequency and therefore the threshold
value of intensity cannot be estimated. The static compo-
nent of the correction vanishes and therefore it was
introduced an averaged angular penetrability instead.
The decay width depends linearly on intensity, predicting
a relative small decrease of the half-life at I ¼ 1028=cm2.
On the other hand, in Refs. [18,19] a one-dimensional

time-dependent numerical approach for a Woods-Saxon
plus Coulomb potential was applied, based on the correct
Eq. (3). The present authors are in disagreement with
Ref. [17] and report an important increase of the pen-
etrability corresponding to intensities larger than the thresh-
old value I¼1025W=cm2 at ℏω ¼ 300 eV for 106Te. Our
Eq. (13) predicts a smaller threshold intensity I ¼
1022 W=cm2 at this frequency, due to the fact that we
used a deformed approach. Thus, in Fig. 3 we reported a
difference about 4 orders of magnitude between the
monopole and full approaches for 212Po.
Concluding, we have proposed an approach describing

the α-decay process in a strong electromagnetic laser field
based on the unitary Hennenberger transformation (4). One
obtains a “standard” Schrodinger equation with the new
Coulomb potential (9) expressed in terms of the time-
dependent radial coordinate jr − S0 sinωtj, where S0 is
given by Eq. (13). We have shown that for D≡ S0=R0 > 1
the oscillating electric field after the averaging procedure
leads to a significant dynamical deformation of the
Coulomb field in the new system of coordinates by
decreasing the effective height of the Coulomb barrier in
the equatorial direction. Therefore (i) the decay half-life
significantly changes (as seen in Fig. 2) and (ii) the
emission process becomes strongly anisotropic towards
the equatorial direction (as seen in Fig. 1). We have
shown that the contribution of the monopole laser term
increases the barrier penetrability by 2 orders of magnitude,
while the total contribution has an effect of about 6 orders
of magnitude. The influence of the nuclear deformation
leads to an additional increase of the barrier penetrability
by 1 order of magnitude for a deformation β2 ∼ 0.3. The
influence of the electromagnetic field can be expressed as a
Geiger-Nuttal law modified by a new shifting parameter.
This effect becomes important for the decontamination of
radioactive waste resulting from nuclear power plants. A
problem still open to be investigated is the role played by
the reduced width γ2α.
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