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For very heavy quarks Q, relations derived from heavy-quark symmetry predict the existence of novel
narrow doubly heavy tetraquark states of the form Q;Q ;g ; (subscripts label flavors), where ¢ designates a

light quark. By evaluating finite-mass corrections, we predict that double-beauty states composed of bbiid,
bbias, and bbds will be stable against strong decays, whereas the double-charm states ccg,g;, mixed
beauty + charm states bcg,g;, and heavier bbg, g, states will dissociate into pairs of heavy-light mesons.
Observation of a new double-beauty state through its weak decays would establish the existence of
tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.
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Following the discovery of the charmonium-associated
state X(3872) by the Belle Collaboration [1], experiments
have led a renaissance in hadron spectroscopy [2].

Many of the newly observed states invite identification
with compositions less spare than the traditional quark—
antiquark meson and three-quark baryon schemes [3].
Tetraquark states composed of a heavy quark and antiquark
plus a light quark and antiquark have attracted much
attention. The observed candidates all fit the form
cCqiq;, where the light quarks ¢ may be u,d, or s. No
such states are observed significantly below threshold for
strong decays into two heavy-light meson states ¢q; + ¢gy;
all have strong decays to c¢ charmonium + light mesons.

In this Letter we examine the possibility of tetraquark
configurations for which all strong decays are kinemati-
cally forbidden. We show that, in the heavy-quark limit,
stable—hence, exceedingly narrow—Q;Q;q,g; mesons
must exist. To apply this insight, we take into account
corrections for finite heavy-quark masses to deduce which
tetraquark states containing b or ¢ quarks should be
stable. The most promising example is a J¥ = 17 isoscalar
7 {bb}=

[ad] -

In the heavy-quark limit, the lowest-lying tetraquark
configurations resemble the helium atom, a factorized
system with separate dynamics for the compact heavy
color-3 Q;0Q; “nucleus” and for the light quarks bound to
the stationary color charge. (We recall that the one-gluon-
exchange interaction is attractive for two quarks forming a
color antitriplet, with half the strength of the attraction
between a quark and antiquark bound in a color singlet.)
At large Q; — Q; separations, which become increasingly
|

double-b meson,

important as the heavy-quark masses decrease, the light g, g,
cloud screens the Q;Q; interaction, so that the Q;0;q,q;
complex may rearrange into a pair of heavy-light mesons
[4]. For heavy quarks Q;Q; bound in a color 3 by aneffective
potential of the “Cornell” Coulomb + linear form at half
strength for both components [5], the rms core radii are
(r’)1/2 = 0.28 fm(cc), 0.24 fm(bc), and 0.19 fm(bb), all
considerably smaller than the size of the associated tetra-
quark states. Hence the core-plus-light (anti)quarks ideali-
zation should be a reliable guide to the masses of ground-
state tetraquarks containing charms and bottoms.

The ground state of the attractive 3 Q,;Q ; configuration
may have total spin SQ[QJ = 1 for identical quarks (i = j)
or for quarks of different flavors (i # j) in a symmetric
flavor configuration {Q;Q;} or total spin Sy =0 for
quarks of different flavors (i # j) in an antisymmetric
flavor configuration [Q;Q;]. To construct a color-singlet
0:0;4,q, state, the light §,g, must be in a color-3. For the
tetraquark ground state, both the heavy Q;Q; and light g, g,
pairs must be in (£ = 0) s waves. To satisfy the Pauli
principle, the flavor-symmetric {g,q,} state must have total
(light-quark) spin j, = 1, whereas the flavor-antisymmetric
[xq;) must have j, = 0.

Stability in the heavy-quark limit—For very heavy
quarks, a hadron mass receives negligible contributions
from the motion of the heavy quarks and spin interactions.
Accordingly, the following relations hold among the
masses of heavy-light mesons and heavy-heavy-light
baryons [6]:

m({0,0;Haa,}) — m({Q:0;}q,) = m(Q{Aqraq;}) — m(Q.q,).
m({QtQj}[QkQI]) - m({QtQ}}qy) = m(Qx[Qle]) - m(QxE]y)7
m([QtQ}]{Qk‘?l}> - m([QtQ}]Qy) = m(Qx{Qle}) - m(Qx@y)’
m([Q;0,113xq)]) — m([Q;Q;lay) = m(Q«[qxq]) — m(Qxq,). (1)
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(In the limit, a heavy core is a heavy core.)

It is easy to see that the dissociation of Q;0;g,q; into
two heavy-light mesons is kinematically forbidden, for
sufficiently heavy quarks. The Q value for the decay is

Q=m(0;0;4:q,) — [m(Q;dqx) + m(Q;3,)]

1/2 2 _ _
— aga) - 3 (3.) T+ O +001/), (2
where A(qy, q;), the contribution due to light dynamics,

becomes independent of the heavy-quark masses, M =
(1/mg; + l/mQj)‘l is the reduced mass of Q; and Q;, and
a, is the strong coupling. The velocity-dependent hyperfine
corrections, here negligible, are calculable in the non-
relativistic QCD formalism [7]. For large enough values of
M, the middle term dominates, so that the tetraquark is
stable against decay into two heavy-light mesons.

The other possible decay channel is to a doubly heavy
baryon and a light antibaryon,

(Q:0;3xq1) = (QiQiqm) + (4x1Gm)- (3)
By Eq. (1), we have
m(Q;0;q,q;) — m(Q;Q;qm) = m(Q.qrq;) — m(Qxqp)-
(4)
In the heavy-quark regime, the flavored-baryon—flavored-
meson mass difference on the right-hand side of Eq. (4) has
the generic form Ay 4 A; /M, . Using the observed mass

differences, m(A.) — m(D) = 416.87 MeV and m(A,)—
m(B) = 340.26 MeV, and choosing effective quark masses

m.=m(J/y)/2=1.55GeV, my, =m(Y)/2 =4.73 GeV,
we find A, = 176.6 MeV? and Ay = 303 MeV; hence,
the mass difference in the heavy-quark limit is 303 MeV.
All of these mass differences are smaller than the mass
of the lightest antibaryon, m(p) = 938.27 MeV, so we
conclude that no decay to a doubly heavy baryon and a
light antibaryon is kinematically allowed. This completes
the demonstration that, in the heavy-quark limit, stable
0;0;q,q, mesons must exist.

Beyond the heavy-quark limit.—To ascertain whether
stable tetraquark mesons might be observed, we must estimate
masses of the candidate configurations. Numerous model
calculations exist in the literature [8], but it is informative to
make estimates in the spirit of heavy-quark symmetry.

The leading-order corrections for finite heavy-quark
mass correspond to hyperfine spin-dependent terms and
a kinetic energy shift that depends only on the light degrees
of freedom,

S-je K

5m:SzM M (5)

where M = mg,; or my, + ey denotes the mass of the
heavy-quark core for hadrons containing one or two heavy
quarks and the coefficients S and K are to be determined
from experimental data summarized in Table I. The spin
splittings lead directly to the coefficients S tabulated
in the last column. The pattern of the spin coefficients is
entirely consistent with the expectations of heavy-quark
symmetry.

TABLE I. Representative masses [9], in MeV, and derived quantities for ground-state hadrons containing heavy

quarks.

State® Jr Mass (j, + %) Mass (j, — %) Centroid Spin splitting S (GeV?)
D) (c[j) % 2010.26 1869.59 1975.09 140.7 0.436
D§*> (c5) % 2112.1 1968.28 2076.15 143.8 0.446
A, (cud)s 0 2286.46
%, (cud)g 1 2518.41 2453.97 2496.93 64.44 0.132
E. (cus)sz 0 2467.87 e e e
B, (cus)g 1 2645.53 25774 2622.82 68.13 0.141
Q. (css)g 1 2765.9 2695.2 2742.33 70.7 0.146
E. (ccu)s 0 3621.40°

B (b[_j) % 5324.65 5279.32 5313.32 45.33 0.427
B§*> (b3) % 5415.4 5366.89 5403.3 48.5 0.459
Ay (bud)s 0 5619.58

%, (bud)g 1 5832.1 5811.3 5825.2 20.8 0.131
g, (bds)s 0 5794.5

B, (bds)g 1 5955.33 5935.02 5948.56 20.31 0.128
Q, (bss)g 1 6046.1

B. (bT) 1 6329° 6274.9 6315.4¢ 54¢ 0.340¢

2

*Subscripts denote flavor-SU(3) representations for heavy baryons.

"From the LHCb observation, Ref. [10].
“Inferred from the lattice QCD calculation of Ref. [11].
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The kinetic energy shift due to light quarks will be different in Qg mesons and Q¢gq baryons. By comparing the centroid
[or center-of-gravity (c.g.)] masses for the charm and bottom systems we can extract the difference of the kinetic-energy

coefficients C for states that contain one or two light quarks, viz., 6K = K,

{(m|(cud)s] — m(cd)} = {m|(bud)s] — m(bd)} = 5’C( :

from which we extract §KC = 0.0235 GeV?. The resulting
mass shifts are

oK

m[{cc}(id)] — m({cc}d): A 2.80 MeV,
m[(be)(iad)) — m({bc}d): 2(m57fmb) = 1.87 MeV,
mi{bb} (i d)) - m({bb}d): 2

—— = 1.24 MeV.
4mb
(7)

These values are small—only slightly larger than the
isospin breaking effects that we neglect as too small to
affect the question of stability [12].

Combining the heavy-quark-symmetry relations of
Eq. (1) with the leading-order corrections, we obtain the
masses of ground-state Q,;Q;G,q, tetraquarks summarized
in Table IT [13]. As inputs for the doubly heavy baryons not
yet experimentally measured, we use the model calcula-
tions of Karliner and Rosner [14].

Narrow tetraquark states.—As we explained in the
discussion surrounding Eq. (4), strong decays of
Q;0;qrq, tetraquarks to a doubly heavy baryon and a
light antibaryon are kinematically forbidden for all the

TABLE II.

— 4. For example,

1
2m,. 2my,

) =5.11 MeV, (6)

ground states. Strong decay to a pair of heavy-light mesons
will occur if the tetraquark state lies above the threshold.
For J¥ = 0" or 2%, a 0;0;4,4, meson might decay to a
pair of heavy-light pseudoscalar mesons, while for J© =
17 the allowed decay channel would be a pseudoscalar plus
a vector meson. According to our mass estimates, the only
tetraquark mesons below threshold are the axial vector

{bb}[ii d] meson, T[{ d]} which is bound by 121 MeV, and

the axial vector {bb}[ii 5] and {bb}[d 5] mesons bound by
48 MeV. We expect all the other Q; QG tetraquarks to lie
at least 78 MeV above the corresponding thresholds for

strong decay [16]. Promising final states include T,

[ad]
E) p, B-D"z~, and B-D*¢~ (which establishes a weak
decay), 7120~

BhY0 =0 (R S
@] —E) ¥, ’de ]} —E) (AZY), and so on.

As others have noted [8,17], unstable doubly heavy
tetraquarks might be reconstructed as resonances in the
“wrong-sign” combinations of DD, DB, and BB. The

doubly charged ’T{”}Jr+ — D' D}, etc., would stand out as

prima facie ev1dence for a non-gg level.

While the production of Q;0;q,g, mesons is
undoubtedly a rare event, we draw some encourage-
ment for near-term searches from the large yield of B,
mesons recorded in the LHCb experiment [18] and the

Expectations for the ground-state tetraquark masses, in MeV." The column labeled “HQS relation” is the result of our

heavy-quark symmetry relations and is explicitly given by the sum of the right-hand side of Eq. (1) and the kinetic-energy mass shifts of
Eq. (7). Here g denotes an up or down quark. For stable tetraquark states the Q value is highlighted in a box.

State JP je m(Q;0;q,) (c.g) HQS relation m(Q;0,4,q;) Decay channel Q MeV)
{ec}ad) 17 0 3663° m({ccyu) + 315 3978 DD 3876 102
{cc}Hgs] 17 0 3764° m({cc}s)+ 392 4156 DD~ 3977 179
{ccH{qeq} OF, 11,27 1 3663 m({ccu) +526  4146,4167,4210  D*D°, D*D* 37343876 412,292,476
[be)[id) ot 0 6914 m(|bclu) + 315 7229 B~D*/B°DC 7146 83
[bc][G5] (0 0 7010¢ m([bcls) + 392 7406 B,D 7236 170
[bel{qiq} 1+ 1 6914 m([bclu) + 526 7439 B*D/BD* 7190/7290 249
{bc}ad) 17 0 6957 m({bc}u) + 315 7272 B*D/BD* 7190/7290 82
{bc}gs) 1+ 0 7053¢ m({bc}s) + 392 7445 DB 7282 163
{be}{qeq,} 0F,17,2% 1 6957 m({bc}u) + 526  7461,7472,7493 BD/B*D 7146/7190 317,282,349
{bb}[ad] 17 0 10176 m({bb}u) + 306 10482 B~B*° 10603
{bb}[g,5] 1F 0 10252° m({bb}s) + 391 10 643 BB:/B,B* 10695/10691
{bb}{gxq,} 0F,17,2% 1 10176 m({bb}u) +512 10674,10681,10695 B-B°, B-B*° 10559,10603 115,78,136

Masses of the unobserved doubly heavy baryons are taken from Ref. [14]; for lattice evaluations of b-baryon masses, see Ref. [15].
®Based on the mass of the LHCb =L candidate, 3621.40 MeV, Ref. [10].
Usmg the s/d mass differences of the corresponding heavy-light mesons.

‘Evaluated as 1 [m(c5) — m(cd) + m(b5) — m(bd)] + m(bed).
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not-inconsiderable rate of double-T production observed in
8-TeV pp collisions by the CMS experiment, o(pp —
YT + anything) = 68 £ 15 pb [19]. The ultimate search
instrument might be a future electron-positron tera-Z
factory, for which the branching fractions [9] Z — bb =
15.12 £ 0.05% and Z — bbbb = (3.6 +1.3) x 107* offer
hope of many events containing multiple heavy quarks.
Concluding remarks.—We have shown that, in the heavy-
quark limit, stable Q;0;q,q, tetraquarks must exist. Our
estimates of tetraquark masses lead us to expect that strong
decays of the J* = 17 {bb}[ii d], {bb}[ii 5], and {bb}[d 5]
states are kinematically forbidden, so that these states should
be exceedingly narrow, decaying only through the charged-
current weak interaction. Observation of any of these states
would signal the existence of a new form of stable matter, in
which the doubly heavy color-3 Q,0 ; diquark is a basic
building block. The unstable Q,;0;3,q, tetraquarks—
particularly those with small Q values—may be observable
as resonances decaying into pairs of heavy-light mesons, if
they are not too broad to stand out above backgrounds.
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Note added.—We recently learned of interesting calcula-
tions of tetraquark masses that also highlight the likelihood
of a stable doubly heavy tetraquark [20].
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