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The standard-model extension (SME) is an effective field theory framework aiming at parametrizing any
violation to the Lorentz symmetry (LS) in all sectors of physics. In this Letter, we report the first direct
experimental measurement of SME coefficients performed simultaneously within two sectors of the SME
framework using lunar laser ranging observations. We consider the pure gravitational sector and the
classical point-mass limit in the matter sector of the minimal SME. We report no deviation from general
relativity and put new realistic stringent constraints on LS violations improving up to 3 orders of magnitude
previous estimations.
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Introduction.—At the classical level, general relativity
(GR) is known to describe accurately the gravitational
phenomenons over a wide range of distance scales [1]. At
the quantum level, the standard model of particle physics is
also a great success of modern physics. It incorporates the
laws of special relativity into a quantum field theory
offering an accurate description of matter and nongravita-
tional forces. These two pillars of modern physics provide a
deep understanding in the description of nature based on a
unique symmetry of space-time known as the Lorentz
symmetry (LS).
However, merging GR with the standard model of

particles in a single unified theory remains a challenging
task. Actually, GR is a classical field theory describing the
gravitational interaction as the classical consequence of
space-time curvature induced by its matter-energy content.
On the other hand, quantum field theory describes electro-
magnetic, weak, and strong interactions with the quantum
exchange of subatomic particles. In an attempt to construct
a quantum gravity theory, many scenarios have been
proposed. However, none of them have yet resulted in a
completely satisfactory theory able to make testable pre-
dictions. For instance, the experimental effects are expected
to become relevant at the Planck scale (mP ¼ 1019 GeV),
where they may manifest as tiny LS violations [2]. Such a
high energy level is nowadays unreachable; however, at
lower energy, high precision experiments should be able to
detect these LS violations if they exist [3,4].
In this context, an effective field theory, the standard

model extension (SME), was constructed to consider and
classify LS violations in all sectors of physics [5–7]. The
SME contains both the standard model and GR
Lagrangians and includes all possible Lorentz-violating
terms in all sectors of physics. Considering the wide range
of applicability of this formalism, there exist a lot of
parameters to be determined by many different types of
experiments [8]. In the following, we will focus on two

aspects of the SME, namely, the pure gravitational sector
[9] and the classical point-mass limit in the matter sector
[10] of the minimal SME.
Following from [9,10], an hypothetical breaking of the

LS in the gravitational and matter sectors naturally leads to
an expansion at the level of the action which is written
Stot ¼ Sg þ Sm þ S0. The first term Sg is the action of the
gravitational field [9], containing a Lorentz invariant part
(the Einstein-Hilbert action of GR) and an additional
Lorentz-violating part which includes new LS violating
fields contracted to gravitational field operators. The
second term Sm is the matter field of point-mass particles
which is written at leading order as [10]

Sm ¼ −mc
Z

dλ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgμν þ cμνÞuμuν

q
þ 1

m
ðaeffÞμuμ

�
; ð1Þ

with λ an affine parameter, uμ ¼ dxμ=dλ the four-velocity
of the particle, m its mass, c the speed of light in a vacuum,
and ðaeffÞμ and cμν are the Lorentz-violating fields. The last
term S0 contains the dynamics associated with the Lorentz-
violating fields.
Experimental evidences imply the Lorentz-violating

fields to be small quantities [9,10]. This justifies one
considering the linearized gravity limit where the observ-
ables only depend on the vacuum expectations value of the
Lorentz-violating fields [denoted c̄μν and ðāeffÞμ for the
gravity-matter couplings and s̄μν for the pure gravitational
sector]. All the coefficients s̄μν, c̄μν, and ðāeffÞμ control the
Lorentz-violating effects at the level of the field equations.
However, c̄μν and ðāeffÞμ have also an important property
since they are species dependent [10]. Such a dependence
in the action of point-mass particles [see Eq. (1)] induces
violations of the three facets of the Einstein equivalence
principle (EEP) and leads to deviation of the geodesic
motion depending at first order on the background values of
the Lorentz-violating fields c̄μν and ðāeffÞμ.
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In the past few years, the s̄μν coefficients alone have been
extensively investigated in postfit analyses (based on
theoretical grounds) with various techniques [11–20].
However, the most stringent constraints were obtained in
global data processing (direct experimental measurement)
from very long baseline interferometry (VLBI) [21] and
lunar laser ranging (LLR) [22]. Concerning the two other
sets of coefficients related to the matter-gravity couplings,
c̄μν is the most extensively considered [23–27]. On the
opposite, the ðāeffÞμ are sparsely constrained from postfit
analyses with atom interferometry, planetary and lunar
ephemerides [15], nuclear bending energy [24], and super-
conducting gravimeters [28].
As discussed in [21,22,29], constraints derived in postfit

analyses are not fully satisfactory since all the correlations
between the SME coefficients and the other global param-
eters (masses, initial conditions, and so on) are neglected
which leads to overoptimistic errors in the estimated
parameters. Realistic constraints can only be determined
in a global data processing where all the correlations are
considered. Furthermore, postfit analyses rely on analytical
signatures derived using simplifying assumptions leading
to a loss of precision in the determination of the sensitivities
to SME coefficients [22].
In this Letter, we derive realistic estimates for both SME

coefficients s̄μν and ðāeffÞμ simultaneously from a global
LLR data processing, neglecting the already very well-
constrained coefficients c̄μν (see Refs. [23–26]).
LLR experiment.—The LLR is an astrometric experiment

devoted to the accurate timing of the round trip of short
laser pulses between a LLR station on Earth and a
retroreflector corner cube at the Moon’s surface. In terms
of distance, the current precision reaches the subcentimetric
level [30,31]. During the last 48 years, the data were
acquired by five LLR stations, namely, McDonald
Observatory in Texas, Observatoire de la Côte d’Azur in
France, Haleakala Observatory in Hawaii, Apache Point
Observatory in New Mexico, and Matera in Italy. The
Apache Point Observatory has been dedicated to milli-
metric measurements since 2006 [31] and realizes the most
accurate observations in the green wavelength to date.

Since March 2015, the infrared (IR) wavelength is pre-
ferred at the Calern site in France due to a better
atmospheric transmission [32].
At the lunar surface, the laser pulses are currently

reflected by five retroreflectors; three were installed by
the Apollo missions XI, XIV, and XV, and the other two
were put on the Soviet rovers Lunokhod 1 and 2.
The data are distributed as normal points which contain

light travel time of photons averaged over several minutes
in order to achieve a higher signal-to-noise ratio measure-
ment. The variations of the round trip travel time contain a
lot of information about physical properties of the Earth-
Moon system. These observations can be used, among
others, to probe fundamental properties of gravitation like,
e.g., the LS.
Numerical modeling.—In this Letter, we simulate

numerically, at the subcentimetric level, each LLR normal
point using a modeling developed within the SME frame-
work. The theoretical expression of the LLR observable is
thoroughly presented in [22] [see Eqs. (2) and (3)]. It
depends on many different contributions, such as the
geometrical distance between Earth and the Moon (that
depends directly on the equations of motion), the gravita-
tional time delay, the atmospheric delay, etc. To account for
LS breaking, we have built a new numerical lunar ephem-
eris named “Éphéméride Lunaire Parisienne Numérique”
(ELPN) which computes the orbital and rotational motions
of the Moon in the SME framework. This ephemeris takes
into account all the physical effects which produce a signal
larger than the millimeter over the Earth-Moon distance. A
first version of ELPN including only the pure gravitational
sector of the minimal SME has already been presented in
[22]. In this work, we extend the theoretical framework of
ELPN to include a breaking of LS in the gravity-matter
sector from the SME framework. A breaking of LS will
affect the LLR observable at two different levels: (i) it will
modify the orbital motion and (ii) it will modify the
gravitational time delay.
The SME contribution to the equations of motion is

given by [9,10,15]

aJ ¼ GNM
r3

�
s̄JKt rK −

3

2
s̄KLt r̂Kr̂LrJ − s̄TJV̂KrK − s̄TKV̂JrK þ 3s̄TLV̂Kr̂Kr̂LrJ þ 3

�
s̄TK −

2

3

X
w

nw3
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�
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�
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X
w
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�
v̂KrJ − 2

δm
M

�
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X
w
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δm
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�
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�
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where M ¼ m☾ þm⊕, δm ¼ m⊕ −m☾, nw2 ¼ Nw
☾ − Nw

⊕,
nw3 ¼ MðNw

☾=m☾ þ Nw
⊕=m⊕Þ, r̂J ¼ rJ=r, v̂J ¼ vJ=c, and

V̂J ¼ VJ=c.
In this expression, rJ is the position of the Moon with

respect to the Earth, vJ is the relative velocity of the Moon

with respect to the Earth, VK is the heliocentric velocity of
the Earth-Moon barycenter, and Nw is the number of
particles of species w (electrons, protons, and neutrons).
We used the three-dimensional traceless tensor s̄JKt ¼
s̄JK − 1

3
s̄TTδJK and a rescaled observable Newtonian
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constant defined as GN ¼ Gð1þ 5
3
s̄TTÞ [12]. One can

notice that this perturbing acceleration is dependent on
the composition of the bodies meaning that the EEP is
violated. This equation has been implemented with all the
associated partial derivatives in ELPN.

Concerning the gravitational time delay denoted by Δτg,
we have also considered the gravity-matter couplings from
the SME [10]. This contribution, once added to the pure
gravitational sector of the minimal SME [9,33], leads to the
following expression for the one-way gravitational
time delay:

Δτgðxe; xrÞ ¼ −
X

b¼⊙;⊕

�
2GNmb

c3

�
s̄TJ −

X
w

Nw
b

mb
αðāweffÞJ

�
x̂Jer ln

�
rbe þ rbr þ rer
rbe þ rbr − rer

�

−
GNmb

c3

�
s̄JKt p̂J

bp̂
K
b þ

�
s̄TJ −

X
w

Nw
b

mb
αðāweffÞJ

�
x̂Jer

�
ðx̂Kbrx̂Ker − x̂Kbex̂

K
erÞ

þ GNmb

c3

�
s̄JKt x̂Jerp̂K

b −
�
s̄TJ −

X
w

Nw
b

mb
αðāweffÞJ

�
p̂J
b

�
pbðrbe − rbrÞ

rberbr

�
; ð3Þ

where xe=r are the positions of the emitter and receiver (the
LLR station on Earth and one of the lunar reflector
depending on the way of the signal), xer ¼ xr − xe,
xbr ¼ xr − xb, xbe ¼ xe − xb with xb the position of the
source that generates gravitation (here Earth or the Sun),
the hat refers to vectors that are normalized so that they are
unit vectors and pJ

b is the impact parameter vector defined
by pb ¼ x̂er × ðxbr × x̂erÞ [33].
We have used a model for the composition of the Sun

characterized by Ne⊙=m⊙ ¼ Np
⊙=m⊙ ≈ 0.9 ðGeV=c2Þ−1

and Nn⊙=m⊙ ≈ 0.1 ðGeV=c2Þ−1 [10]. For the composition
of Earth, we have considered that Ne

⊕=m⊕ ¼ Np
⊕=m⊕ ≈

Nn
⊕=m⊕ ≈ 0.5 ðGeV=c2Þ−1 (idem for the Moon), as in

[15,34]. It is worth mentioning that considering LS
violations induced by neutral macroscopic bodies (with
equal number of electrons and protons) makes the data
being only sensitive to a combination involving electrons
and protons like αðāeþp

eff Þμ ¼ αðāeeffÞμ þ αðāpeffÞμ.
We do not mention terms in s̄TT and αðāweffÞT in Eq. (3).

They are absorbed in GN in the orbital part [see Eq. (2)], so
they are only supposed to show up in the gravitational light
time delay expression. Unfortunately, considering the
current accuracy of LLR data, a simple computation using
Eq. (3) reveals that only an upper limit of 10−2–10−3 can be
reached for a single combination involving s̄TT and
αðāweffÞT . Such limits are not competitive with other
determinations from VLBI [21], nuclear bending energy
[24], or atom interferometry [23].
The numerical integration of the equations of motion

gives the time evolution of the Earth-Moon distance, the
lunar librations, and all the associated partial derivatives.
Then, these quantities are transformed into a theoretical
round-trip light time following the International Earth
Rotation and Reference Systems Service standard 2010
[35]. The residuals are deduced by comparing these
theoretical estimations with the measurements and are
finally minimized with a standard iterative least-square fit.
Solution in GR framework.—The procedure followed in

this analysis is similar to the one described in [22]. In a first

step, we have built a reference solution in pure GR by
imposing the nullity of the Lorentz-violating coefficients.
The initial physical parameters and initial conditions are
taken from DE430 [36]. Then, the independent solution
ELPN is built with an iterative process consisting of
adjusting 59 parameters to 24 022 normal points spanning
48 yr of LLR observations from August 1969 to December
2016. (These parameters include, e.g., the position of the
LLR stations and retroreflectors at J2000, the orbital and
rotational lunar initials conditions at J2000, the masses of
the Moon and the Earth-Moon barycenter, Love’s numbers,
the time delays of degree 2 for solid body tides of both
Earth and the Moon, the total moment of inertia of the
Moon, and the damping term between the mantle and the
fluid core of the Moon.) Among these normal points we
have considered 1337 observations in IR wavelength
obtained by the Grasse station in France [37]. The
dispersion of the residuals obtained with ELPN in pure
GR at the end of the iterative process are shown in Table I.
They reveal that our numerical solution is perfectly
accurate, especially for the most recent observations
(Apache Point and Grasse [MeO, IR]) for which the
dispersion is at the 2 cm level.
This new GR solution constitutes the starting point of our

analysis of LS violation. Adopting the same procedures as
in the literature [8,28,38], we extract LS violation sensi-
tivities using two methods. The most rigorous one is called
“coefficient separation” and the other one is the “maxi-
mum reach.”
Coefficient separation.—In this procedure, all the

Lorentz-violating fields are treated as nonzero simultane-
ously. A global fit with the other 59 physical parameters
shows that some correlations between SME coefficients are
very high (larger than 95%), meaning that the data is
sensitive to linear combinations of the SME coefficients.
An iterative analysis of partial derivatives allows us to
determine the most sensitive and independent linear com-
binations attainable with the LLR experiment
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s̄1 ¼ s̄XY; ð4aÞ
s̄2 ¼ s̄XZ; ð4bÞ

s̄3 ¼ s̄XX − s̄YY; ð4cÞ
s̄4 ¼ 0.35s̄XX þ 0.35s̄YY − 0.70s̄ZZ − 0.94s̄YZ; ð4dÞ
s̄5 ¼ −0.62s̄TX þ 0.78αðāeþp

eff ÞX þ 0.79αðāneffÞX; ð4eÞ
s̄6 ¼ 0.93s̄TY þ 0.34s̄TZ − 0.10αðāeþp

eff ÞY − 0.10αðāneffÞY
− 0.044αðāeþp

eff ÞZ − 0.044αðāneffÞZ: ð4fÞ
At the end, two fundamental SME coefficients (s̄XY and
s̄XZ) and four linear combinations (s̄3–6) can be estimated
without high correlations (the largest one remains below
30%). A fit including the linear combinations with the 59
physical parameters provide estimations of Eqs. (4) with
their statistical uncertainties.
It is known that the least-square fit returns only statistical

uncertainties (labeled σstat) which may be overoptimistic
since no systematic is considered. However, in LLR
observations all the data acquired by one instrument is
not independent, which results in systematic effects in the
estimations of parameters. Therefore, it is essential to
quantify such neglected systematics in order to provide
realistic uncertainties on the estimated parameters.
In order to assess these systematics we used a jackknife

resampling method (see, e.g., [39] and [22] for a similar use
of this method to LLR data). We built 18 subsets of data: 13
by station or instrument (as depicted in Table I) and 5 by
retroreflectors. Each subset is constructed by removing all
the observations acquired by one station or instrument or
reflected by one retroreflector. The basic idea is to consider
that each subset provides an independent estimation of the
SME coefficients which is used to infer a systematic
uncertainty (for more details see [22]). We have applied

this procedure to (i) subsets by stations or instruments (the
obtained systematics variance is labeled σ2s) and to (ii) sub-
sets by retroreflectors (the obtained systematics variance is
labeled σ2r).
Finally, the total variance estimate is the sum of

statistical and the two systematics uncertainties σ2 ¼
σ2stat þ σ2syst with σ2syst ¼ σ2s þ σ2r . The final estimations with
the associated realistic errors on SME coefficients are given
in Table II. No deviation from GR is reported.
Our results improve up to a factor 2 previous estimations

in the pure gravitational sector [29] on s̄XY , s̄XZ, and s̄3.
However, the estimation on the combination s̄4 is improved
by more than 1 order of magnitude compared to [22]. This
improvement is mainly due to the consideration of 3300
additional subcentimetric data distributed between
December 2013 and December 2016.
The main novelty from this work is related to the last two

linear combinations (s̄5 and s̄6) which regroup the gravity-
matter couplings coefficients ðāeffÞJ with the boost coef-
ficients s̄TJ. In previous studies based on theoretical
grounds, the ðāeffÞJ coefficients were shown to appear in
four linear combinations instead of two [see Eqs. (20) of
[15] ], highlighting the limitations of postfit methods. Such a
difference is explained sincewe have numerically integrated
effects of LS violations, considering in this way short- and
long-term signatures. The main result relies on the bounds
over s̄5 and s̄6 (cf. Table II) which are at the level of one part
in 108 representing an improvement of almost 2 orders of
magnitude compared to previous best determination [15]
(considering results from the LLR section).
Maximum reach.—This procedure is less general than the

previous one and is based on the assumption that no set of the
SMEcoefficients could be generated in the underlying theory
in such a way that they lead to an exact cancellation in
observable effects [28]. In this approach, each Lorentz-
violating coefficient is estimated separately assuming all
theothers vanish.Wehave performed successively a global fit
of the 59 physical parameters with each SME coefficient one
byone. Then,wehave deduced realistic errors performing the
same jackknife resamplingmethod as the one discussed in the
previous section. Final estimations are presented in Table III.
No deviation from GR is reported.

TABLE II. Realistic constraints on SME linear combinations
[see Eqs. (4)] from a global LLR data analysis in “coefficient
separation” approach. The quoted uncertainties correspond to 1σ
realistic uncertainties.

SME Constraints jσsyst=σstatj
s̄1 ð−0.5� 3.6Þ × 10−12 3.7
s̄2 ðþ2.1� 3.0Þ × 10−12 8.8
s̄3 ðþ0.2� 1.1Þ × 10−11 2.8
s̄4 ðþ3.0� 3.1Þ × 10−12 4.5
s̄5 ð−1.4� 1.7Þ × 10−8 4.8
s̄6 ð−6.6� 9.4Þ × 10−9 4.1

TABLE I. Residuals of ELPN in pure GR per LLR stations and
instruments. μ is the mean of the dispersion and σ is the
dispersion around the mean. For each station or instrument, N
is the number of available observations.

Station or instrument Period N μ½cm� σ½cm�
Haleakala 1984–1990 770 −0.6 10.4
Matera 2003–2015 118 −1.0 8.9
McDonald (2.7m) 1969–1985 3604 9.1 34.9
McDonald (MLRS1) 1983–1988 631 5.2 37.9
McDonald (MLRS2) 1988–2015 3670 0.4 9.0
Grasse (Rubis) 1984–1986 1188 4.7 18.2
Grasse (Yag) 1987–2005 8324 −0.5 4.7
Grasse (MeO) 2009–2016 1732 0.0 2.4
Grasse (IR) 2015–2016 1337 −1.5 2.2
Apache Point 2006–2010 941 0.0 2.6
Apache Point 2010–2012 513 0.0 3.3
Apache Point 2012–2013 360 0.0 3.2
Apache Point 2013–2016 834 0.0 2.1
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Our results improve (except s̄TX) previous best estima-
tions in the pure gravitational sector [29] up to a factor 2.
However, in the matter sector, the improvement is global
compared to the best current postfit determinations [15,28].
In particular, we improve the constraints on the matter
sector coefficients by 2 [for αðāneffÞX] to 3 orders of
magnitude [for αðāeþp

eff ÞZ]. In addition, let us notice that
our constraints take into account correlations with the other
global physical parameters where the estimations deduced
with postfit methods does not.
We insist on the fact that results obtained with this

approach are less general than the ones obtained with the
“coefficient separation” method.
Conclusion.—In this Letter, we presented a simultaneous

determination of the pure gravitational and matter-gravity
coupling SME coefficients using LLR observations. Our
results improve current constraints by up to 3 orders of
magnitude. A key point is addressed when no assumption is
assumed on the exact cancellation of SME coefficients. In
that case, LLR data is only sensitive (through s̄5 and s̄6) to a
combination of the two SME sectors and does not allow us
to disentangle them, meaning that LLR does not provide a
pure test of the EEP (already pointed out by [40]). To
disentangle this ambiguity, our results in Table II have to be
combined with other measurements related to EEP (and not
based on theoretical grounds but rather on direct measure-
ment from experiment in order to maintain the robustness
of the current analysis) like, e.g., test of the universality of
free fall with MicroSCOPE [41,42] or tests of the gravi-
tational redshift like, e.g., with the Galileo Vand VI GNSS
satellites [43].

The authors thank the LLR staff observers and the ILRS
for the data collection and normal points distribution. A. B.
thanks SYRTE in Paris Observatory for financial support,

C. L. P. L. is grateful for the CNRS/GRAM and Axe Gphys
of Paris Observatory Scientific Council.

*adrien.bourgoin@unibo.it
[1] C. M. Will, Living Rev. Relativity 17 (2014).
[2] V. A. Kostelecký and S. Samuel, Phys. Rev. D 39, 683

(1989).
[3] D. Mattingly, Living Rev. Relativity 8, page (2005).
[4] J. D. Tasson, Rep. Prog. Phys. 77, 062901 (2014).
[5] V. A. Kostelecký and R. Potting, Phys. Rev. D 51, 3923

(1995).
[6] D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760

(1997); 58, 116002 (1998).
[7] V. A. Kostelecký, Phys. Rev. D 69, 105009 (2004).
[8] V. A. Kostelecký and N. Russell, Rev. Mod. Phys. 83, 11

(2011).
[9] Q. G. Bailey and V. A. Kostelecký, Phys. Rev. D 74, 045001

(2006).
[10] V. A. Kostelecký and J. D. Tasson, Phys. Rev. D 83, 016013

(2011).
[11] H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, and K.-Y.

Chung, Phys. Rev. Lett. 100, 031101 (2008); K.-Y. Chung,
S.-W. Chiow, S. Herrmann, S. Chu, and H. Müller, Phys.
Rev. D 80, 016002 (2009).

[12] Q. G. Bailey, R. D. Everett, and J. M. Overduin, Phys. Rev.
D 88, 102001 (2013).

[13] L. Shao, Phys. Rev. Lett. 112, 111103 (2014); Phys. Rev. D
90, 122009 (2014).

[14] L. Iorio, Classical Quantum Gravity 29, 175007 (2012).
[15] A. Hees, Q. G. Bailey, C. Le Poncin-Lafitte, A. Bourgoin,

A. Rivoldini, B. Lamine, F. Meynadier, C. Guerlin, and P.
Wolf, Phys. Rev. D 92, 064049 (2015).

[16] V. A. Kostelecký and J. D. Tasson, Phys. Lett. B 749, 551
(2015).

[17] V. A. Kostelecký and M. Mewes, Phys. Lett. B 757, 510
(2016).

[18] J. B. R. Battat, J. F. Chandler, and C.W. Stubbs, Phys. Rev.
Lett. 99, 241103 (2007).

[19] J. D. Tasson, Symmetry 8, 111 (2016).
[20] C.-G. Shao, Y.-F. Chen, R. Sun, L.-S. Cao, M.-K. Zhou,

Z.-K. Hu, C. Yu, and H. Müller, arXiv:1707.02318.
[21] C. Le Poncin-Lafitte, A. Hees, and S. Lambert, Phys. Rev. D

94, 125030 (2016).
[22] A. Bourgoin, A. Hees, S. Bouquillon, C. Le Poncin-Lafitte,

G. Francou, and M. C. Angonin, Phys. Rev. Lett. 117,
241301 (2016).

[23] M. A. Hohensee, S. Chu, A. Peters, and H. Müller, Phys.
Rev. Lett. 106, 151102 (2011).

[24] M. A. Hohensee, H. Müller, and R. B. Wiringa, Phys. Rev.
Lett. 111, 151102 (2013).

[25] P. Wolf, F. Chapelet, S. Bize, and A. Clairon, Phys. Rev.
Lett. 96, 060801 (2006).

[26] M. A. Hohensee, N. Leefer, D. Budker, C. Harabati, V. A.
Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 111, 050401
(2013).

[27] H. Pihan-Le Bars, C. Guerlin, R.-D. Lasseri, J.-P. Ebran,
Q. G. Bailey, S. Bize, E. Khan, and P. Wolf, Phys. Rev. D
95, 075026 (2017).

TABLE III. Realistic constraints on SME coefficients from a
global LLR data analysis in “maximum reach” approach. The
quoted uncertainties correspond to 1σ realistic uncertainties.

SME Constraints jσsyst=σstatj
s̄XX − s̄YY ð−1.1� 7.1Þ × 10−12 4.5
s̄XX þ s̄YY − 2s̄ZZ ðþ2.0� 2.8Þ × 10−11 8.9
s̄XY ð−1.9� 3.4Þ × 10−12 8.0
s̄XZ ðþ3.2� 3.7Þ × 10−12 12.3
s̄YZ ð−4.1� 4.6Þ × 10−12 7.4
s̄TX ðþ1.5� 1.6Þ × 10−8 6.4
s̄TY ðþ0.3� 5.2Þ × 10−9 4.7
s̄TZ ð−0.5� 7.7Þ × 10−9 4.1
αðāeþp
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