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Superconducting-gravimeter measurements are used to test the local Lorentz invariance of the
gravitational interaction and of matter-gravity couplings. The best laboratory sensitivities to date are
achieved via a maximum-reach analysis for 13 Lorentz-violating operators, with some improvements
exceeding an order of magnitude.
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Local Lorentz invariance is among the foundational
building blocks of general relativity (GR). Though GR
provides an impressive description of the wide variety of
gravitational phenomena, standard lore holds thatGRmaybe
the low-energy limit of an underlying theory that merges
gravitation and quantumphysics, such as string theory. Local
Lorentz violationmay arise in such an underlying framework
[1]. Hence, tests of local Lorentz invariance probe the core
construction ofGRandmayprovide clues about the structure
of new physics at the quantum-gravity scale. These ideas
triggered the development of a comprehensive effective field
theory based framework [2,3] for testing Lorentz symmetry
used in many modern searches for violations [4].
Superconducting gravimeters [5] have generated a vast

amount of information about the gravitational field of Earth.
Devices functioning at over two dozen locations around the
globe generate data at minute intervals for the Global
Geodynamics Project [6]. In some cases measurements span
more than a decade, and sensitivities to local variations in the
gravitational field approaching parts in 1012 can be extracted
for variations with periods on the order of a day. Stability at
the level of parts in 109 per year [5] has also been achieved.
Though the primary use of the data is in geophysical
applications, the nature of the data clearly also depends on
the foundational theories of physics. Hence, these data sets
provide opportunities to test fundamental physics [7,8]. The
search for preferred frame effects in gravitational physics, a
particular Lorentz-symmetry violating scenario,was perhaps
the first application of superconducting gravimeters to tests
of foundational theory [9].
In the four decades since those early tests, interest in

Lorentz violation has surged [10], as have theoretical and
experimental developments [11–13]. In addition to the search
for preferred frame effects as a signal of alternatives to GR
[14], more general types of Lorentz violation are now
actively sought as a possible signal of new physics at the
Planck scale [4]. Though performing Planck-scale experi-
ments directly will likely remain infeasible for the foresee-
able future, experimental information about the nature of the
underlying theory can be attained by searching for tiny
Planck-suppressed effects in experiments at presently acces-
sible energies. Lorentz violation provides a useful candidate

Planck-suppressed effect [1], and the gravitational standard-
model extension (SME) provides a field-theory based frame-
work for organizing a systematic search [2,3,15]. While
sensitivities to SME coefficients for Lorentz violation have
been achieved in a variety of gravitational systems [16–23],
including pioneering work with an atom-interferometer
gravimeter [16,17], this work provides the first exploration
of superconducting gravimeters in the SME framework and
the first search for matter-sector Lorentz violation using
gravimeters of any kind. Sensitivity improvements over prior
gravimeter work [16,17] are achieved for seven coefficients
for Lorentz violation, and the best laboratory sensitivity to six
coefficients not previously explored in gravimeter experi-
ments is achieved. In some cases, sensitivities are improved
by more than a factor of 10.
The SME is constructed as an expansion about the

actions of GR and the standard model in Lorentz-violating
operators of increasing mass dimension. In the present
work we focus on the minimal gravitational SME, in which
attention is restricted to operators of mass dimension 3 and
4. We consider both the pure-gravity sector [24] and the
spin-independent gravitationally coupled fermion sector
[25] in the limit of linearized gravity. Though work
extending the framework to include higher dimension
operators [22,23,26] and nonlinear gravity [27] is now
well underway, treatment of these operators lies beyond our
present scope. Here, we summarize aspects of the SME
framework relevant for this work. For additional detail, the
reader is referred to Refs. [3,24,25].
The SME action in this limit can be written S ¼

SG þ Sψ þ S0. Here, SG is the minimal pure-gravity sector,

SG ¼ 1

16πG

Z
d4xeðR − uRþ sμνRμν þ tκλμνCκλμνÞ; ð1Þ

whereG is Newton’s constant, and R, Rμν, and Cκλμν are the
Ricci scalar, Ricci tensor, and Weyl tensor, respectively. The
symbol e is the determinant of the vierbein eμa, and u, sμν,
and tκλμν are coefficient fields having dynamics contained in
S0. Lorentz violating signals in the post-Newtonian analysis
to follow are associated with sμν, without contribution from
tκλμν [28].
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Similarly, spin-independent effects in the minimal gravi-
tationally coupled fermion sector take the form

Sψ ¼
Z

d4x

�
1

2
ieeμaψ̄ΓaDμ

↔
ψ − eψ̄Mψ

�
: ð2Þ

Here, ψ is the fermion field and Dμ is the covariant
derivative, which, along with the vierbein, provides the
coupling to gravity, Γa ≡ γa − cμνeνaeμbγb − eμeμa, and
M≡mþ aμeμaγa. The matter-sector coefficient fields aμ,
eμ, and cμν also have dynamics contained within S0. The
dynamics are assumed to trigger spontaneous Lorentz
violation in which the coefficient fields acquire vacuum
expectationvalues, a process for generatingLorentz violation
in gravity that is consistent with Riemann geometry [3,29].
The issue of geometric consistency has also led to the
development of SME-based Finsler spacetimes [30].
Thevacuumexpectationvalues, or coefficients for Lorentz

violation, are denoted with an overline and, though other
choices are possible [31], are typically assumed constant in
asymptotically Minkowski spacetimes. For example, the
vacuum value associated with the coefficient field cμν is
c̄μν satisfying ∂αc̄μν ¼ 0. The coefficients parametrize the
amount of Lorentz violation in the theory and are the objects
sought by experiment. Following generic treatment of
spontaneous Lorentz violation and the development of the
post-Newtonian limit in the pure-gravity sector [24] and the
matter sector [25], the signals for Lorentz violation in
gravitational experiments can be found. In the work to
follow, the coefficients for Lorentz violation āμ and ēμ
always appear in the combination ðāeffÞ ¼ āμ −mēμ.
Additionally, ðāeffÞμ appears with a constant α in gravita-
tional studies, which characterizes coupling constants in the
underlying theory. This combination is of special interest
since it is typically unobservable in flat spacetime [32]. Note
also that thematter-sector coefficients are in general particle-
species dependent and a superscriptw denotes the associated
species. In this work, the focus is on ordinary matter with w
referring to a proton, neutron, or electron.
The system of interest here can be referred to as a force-

comparison gravimeter experiment [25]. In this class of
experiments, the gravitational force on a laboratory body is
countered by an appropriate electromagnetic force, and the
Lorentz-violating signal can be written

FLV ¼ −mTg
X
n

½An cosðωnT þ ϕnÞ þ Bn sinðωnT þ ϕnÞ�;

ð3Þ
as developed in Sec. VIIC of Ref. [25], where

An ¼
X
w

�
Nw

mT G
w
n þ Nw

⊕

mS E0w
n þ 1

3
Gn

�
;

Bn ¼
X
w

�
Nw

mT H
w
n þ Nw

⊕

mS F0w
n þ 1

3
Hn

�
: ð4Þ

Here, g is the Newtonian gravitational field, mT and mS are
the conventional Lorentz-invariant mass of the test body
and source body, respectively, and Nw and Nw

⊕ are the
number of particles of type w in the test body and Earth,
respectively. Here, the test body is a niobium sphere with a
mass of a few grams, and the source body is Earth. The
summation index w takes the values proton, neutron, and
electron. The frequencies ωn are drawn from the set

ωn ∈ f2ω;ω; 2ωþ Ω; 2ω − Ω;ωþ Ω;ω −Ω;Ωg; ð5Þ

where ω is the sidereal angular frequency and Ω is the
annual angular frequency. Note that 2ω arises due to the
rotation of two-index coefficients. The corresponding
phase ϕn can be obtained from the frequency via the
replacement ω → ϕ, Ω → 0, where ϕ is a phase that
specifies the orientation of the laboratory at time T ¼ 0.
The time T along with the spacial coordinates X, Y, Z are
the coordinates of the Sun-centered celestial equatorial
frame in standard use for SME studies [4]. The contribu-
tions to the Lorentz-violating amplitude Gw

n , Hw
n , E0w

n , and
F0w
n can be found in Table I, while the contributions Gn and

Hn are constructed via Eq. (142) of Ref. [25]. These are the
results developed in Ref. [25] presented here with a few
corrections. Here, VL ¼ ωR, where R is Earth’s radius and
V⊕ is the speed of Earth on its path around the Sun. The
angle ζ is between the local Lorentz-invariant free-fall
direction and the direction of Earth’s center, χ is the
colatitude of the experiment, η is the inclination of
Earth’s orbit, and mw is the mass of species w.
Our method for extracting measurements of the coef-

ficients for Lorentz violation from the Global Geodynamics
Project data proceeds as follows. We use corrected minute
data, which provide a measurement of the gravitational
force each minute obtained from the raw data via some
repairs performed by the station manager including the
removal of some transients such as major earthquakes.
Where possible, we follow the methods developed for the
atom-interferometer gravimeter analysis [16]. The basic
idea is to perform a discrete Fourier transform on relevant
sets of gravitational force versus time data to extract the
amplitudes An, Bn. Equation (4) is then used to interpret the
amplitudes as measurements of the SME coefficients.
As is typical of SME searches, the amplitudes An, Bn

extracted from data collected by a particular device at a
given site provide a measurement of a linear combination of
SME coefficients rather than a measurement of a single
term in the underlying theory. The numbers multiplying the
coefficients for Lorentz violation in these linear combina-
tions can contain the colatitude of the experiment χ and the
dependence on the particle species content of the bodies
involved. Hence, different sets of data from different
locations and/or different devices measure different linear
combinations of SME coefficients. Two procedures are
common in the literature for extracting sensitivities to
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individual SME coefficients from such linear combinations.
One approach effectively considers a series of special
models, each involving one and only one nonzero coef-
ficient for Lorentz violation, hence attributing the meas-
urement of an amplitude An, Bn to each of the coefficients it
contains individually. This approach is motivated by the
thinking that exact cancellation between multiple coeffi-
cients in a given measurement is unlikely. We call sensi-
tivities to coefficients for Lorentz violation obtained in this
way the “maximum reach” achieved for the given coef-
ficient. The other approach is to treat all coefficients as
nonzero simultaneously and use multiple sets of data to
separate the linear combinations. We say sensitivities
attained in this way are found by “coefficient separation.”
In what follows we apply both methods using several sets
of gravimeter data.
For our maximum-reach analysis we used data from Bad

Homburg, Germany, from 2007–2013 (with several gaps of
less thanoneweek), a site providing someof the cleanest data.
Three days of original gravimeter data from Bad Homburg
are shown in Fig. 1, appearing as the large-amplitude signal.

A daily variation associatedwith tidal effects is clearly visible
in the three peaks. Following Ref. [16] we remove the
dominate tidal contributions from the signal using a model
of solid Earth tides [33]. Figure 1 also shows the data after the
subtraction of the model. Application of a discrete Fourier
transform to the residuals,

An; Bn ¼
2

K

X
k

dðtkÞ cos; sinðωntk þ ϕÞ; ð6Þ

yields the amplitudes shown in Table II. Here, K is the total
number of measurements; dðtkÞ are the residual gravity
measurements at times tk. Estimated uncertainties are
obtained following Refs. [16,17] by performing the analysis
at several frequencies near the characteristic frequencies and
computing the root mean square.
The amplitudes in Table II together with the maximum-

reach procedure yield the sensitivities to the coefficients for
Lorentz violation shown in the second column of Table III.
A dagger (†) indicates a sensitivity that exceeds previous
laboratory tests, though better constraints exist from Solar
System or astrophysical observations [19–21,23,34]. The
maximum reach listed here for the s̄μν coefficients, which
have previously been explored via gravimeter analysis
[16,17], is an improvement upon that work for all seven
coefficients listed.

TABLE I. Amplitudes for the force FLV .

Amplitude Phase

Gw
ω ¼ 2mwζðc̄wÞðXZÞ − 4

5
VLαðāweffÞY sin χ − 2mwVLðc̄wÞðTYÞ sin χ ϕ

þ 4
5
VLαðāweffÞX sin χ þ 2mwVLðc̄wÞðTXÞ sin χHw

ω ¼ 2mwζðc̄wÞðYZÞ ϕ

Gw
2ω ¼ mwζ(ðc̄wÞXX − ðc̄wÞYY) 2ϕ

Hw
2ω ¼ 2mwζðc̄wÞðXYÞ 2ϕ

Gw
Ω ¼ 2V⊕α(ðāweffÞY cos ηþ ðāweffÞZ sin η)þ 2mwV⊕½ðc̄wÞðTYÞ cos ηþ 2ðc̄wÞðTZÞ sin η� 0

Hw
Ω ¼ −2V⊕αðāweffÞX − 2mwV⊕ðc̄wÞðTXÞ 0

E0w
ω ¼ −VLð2αðāweffÞY þ 4

5
mwðc̄wÞðTYÞÞ sin χ ϕ

F0w
ω ¼ VLð2αðāweffÞX þ 4

5
mwðc̄wÞðTXÞÞ sin χ ϕ

E0w
Ω ¼ 2V⊕α(ðāweffÞY cos ηþ ðāweffÞZ sin η)þ 2mwV⊕(ðc̄wÞðTYÞ cos ηþ ðc̄wÞðTZÞ sin η) 0

F0w
Ω ¼ −2V⊕αðāweffÞX − 2mwV⊕ðc̄wÞðTXÞ 0

FIG. 1. Bad Homburg data taken January 1–3, 2012, before and
after tidal model subtraction. Discrete points are plotted that
appear as a continuous curve at this scale.

TABLE II. Bad Homburg amplitudes.

Amplitude
Measurement

ð10−9gÞ Amplitude
Measurement

ð10−9gÞ
A2ω −0.02� 0.01 B2ω 0.04� 0.01
Aω −0.01� 0.06 Bω −0.1� 0.1
A2ωþΩ −0.003� 0.004 B2ωþΩ 0.003� 0.004
A2ω−Ω −0.01� 0.01 B2ω−Ω 0.006� 0.005
AωþΩ −0.00� 0.02 BωþΩ −0.01� 0.02
Aω−Ω 0.01� 0.03 Bω−Ω 0.06� 0.03
AΩ −1� 1 BΩ 1� 1

PRL 119, 201101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 NOVEMBER 2017

201101-3



We perform the same analysis on data collected from the
device in Metsahovi, Finland, from 2007–2012, and on a
year’s worth of data from Strasbourg, France and from
Apache Point, USA taken in 2012. While the maximum
reach available from these sites is typically less than that
obtained from Bad Homburg, their locations at different
colatitudes permit some coefficient separation. We do this
following the procedure outlined in Ref. [17] in which each
measurement of An, Bn provides a probability distribution
that we assume to be Gaussian with the measurement and
uncertainty providing the center and standard deviation. The
probability distribution can then be understood as a function
of the coefficients for Lorentz violation through Eq. (4).
These probability distributions can then be multiplied
together for each of the relevant measurements from each
of the four sites to obtain an overall probability distribution.
Integrating the distribution over all of the coefficients except
the one of interest then yields an estimate and uncertainty
for that coefficient. The result of this process provides our
estimates for the coefficients achieved by coefficient sepa-
ration shown in the right column of Table III. This procedure
for achieving initial coefficient separation estimates assumes
the error sources in the four experiments are completely
independent, while some geophysical noise sources may be
somewhat coherent. Though beyond our current scope, it
may be possible to address this potential issue through
coherent combination of the original data. Relative to
Ref. [17], correlations between amplitudes due to finite data
are small and are neglected here.
Coefficients s̄XX−YY and s̄XY are obtained from ampli-

tudes in which they are the only coefficient for the Lorentz
violation involved. Hence, these entries in the maximum
reach column of Table III could equally be regarded as the
results of coefficient separation, and they are omitted from the

four-site analysis. Sufficient information is not available to
separate the αðāeþp

eff ÞZ, αðāneffÞZ, and ðc̄nÞTZ coefficients from
each other. Hence, individual constraints are not available for
column 3 of Table III, and the combination is treated as a
single coefficient in the separation analysis resulting in
αðāeþp

eff ÞZþ1.1αðāneffÞZþ1.1GeVðc̄nÞTZ¼0�6×10−4GeV.
We do not include data from other experiments beyond the
four gravimeter sites except in excluding from consideration
other coefficients that have been constrained much more
tightly by nongravitational tests. As thisworkwas completed,
the ðc̄nÞTJ were also constrained by nongravitational tests
[35]. Note that the results of coefficient separation generate
improvements over prior lab work for s̄μν coefficients while
constraints for matter-sector coefficients are weak. This
feature can be traced to the fact that all four sites involve
niobium test masses and Earth and hence the same proton/
neutron ratios. Note also that proton and electron coefficients
are listed together as separating them would require charged
matter.
The sensitivities to coefficients in Table III, found via

the standard approach to gravimeter analysis in the SME
[16,17], provide a basic sense of upper bounds on coef-
ficients. However, some care should be used in interpreting
the results. Though we find no compelling evidence of
Lorentz violation, some notable deviations from zero are
seen in a few cases. In addition to the statistical expectation
of a few weak signals when seeking this number of effects,
these likely reflect some challenges inherent to the search
that we outline here.
The search involves subtracting dominant tidal effects

from the gravimeter signal and attributing any remaining
periodicity at the characteristic frequencies to Lorentz
violation, with uncertainty estimated by the average level
of the local Fourier spectrum near the characteristic fre-
quency. The method relies on the assumption that any
potential Lorentz-violating signal is not also contained in
the tidal model. Modeling of additional local effects is
avoided to minimize this concern. We also note that a
Fourier transform of the raw data with no tidal modeling
yields the same level of reach for annual variations, which is
the aspect of the measurement associated with many of the
most significant sensitivity improvements. The method also
assumes that residual environmental effects at the character-
istic frequencies have a size similar to neighboring Fourier
amplitudes. This assumption is most challenged by Lorentz-
violating frequencies that coincide with dominant tidal
components. Here, the relatively small residual signal is
the result of subtracting a comparatively large modeled tide
from a similarly sized signal. One could also imagine the
Lorentz-violation signal of a special linear combination of
coefficients that matches the tidal phase being masked by a
tidal effect.
A variety of opportunities for further improvements with

related experiments exist. One key challenge in gravimeter
tests is managing periodic environmental effects without

TABLE III. Lorentz violation measurements.

Coefficient
Max reach via Bad

Homburg
Four-site coefficient

separation

s̄XX−YY 2� 1 × 10−10† � � �
s̄XY −4� 1 × 10−10† � � �
s̄XZ 0� 1 × 10−10† −2� 2 × 10−9†

s̄YZ 3� 1 × 10−10† 4� 3 × 10−9†

s̄TX −3� 3 × 10−7† −3� 3 × 10−7†

s̄TY −6� 3 × 10−7† −5� 2 × 10−7†

s̄TZ −1� 1 × 10−6† −1� 1 × 10−6†

ðc̄nÞðTXÞ −4� 6 × 10−6 −3� 2 × 10−3

ðc̄nÞðTYÞ −1� 1 × 10−5 2� 4 × 10−3

ðc̄nÞðTZÞ −1� 1 × 10−5 � � �
αðāeþp

eff ÞX −4� 6 × 10−6 GeV† 3� 2 × 10−2 GeV
αðāneffÞX −4� 5 × 10−6 GeV† −3� 2 × 10−2 GeV
αðāeþp

eff ÞY −5� 7 × 10−6 GeV† 0� 4 × 10−2 GeV
αðāneffÞY −4� 6 × 10−6 GeV† 0� 3 × 10−2 GeV
αðāeþp

eff ÞZ −1� 2 × 10−5 GeV† � � �
αðāneffÞZ −1� 1 × 10−5 GeV† � � �
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usingmodels constructed by fitting to gravimeter data.Away
to side step this issue for matter-sector coefficients is to
consider analogous weak-equivalence principle tests that
search for a variation in the relative gravitational force or
acceleration of two ormore bodies. It may also be possible to
use the phase information associated with environmental
systematics to separate them from the effects of certain
combinations of coefficients for Lorentz violation.
Correlations between signals at multiple sites may also be
useful. Gravimeter data involving bodies of other composi-
tions would aid in performing coefficient separation for the
matter sector. Free-fall gravimeter tests such as atom inter-
ferometers are also of interest, particularly for the matter
sector, as they involve a different dependence on the matter-
sector coefficients. An increase in the long-term stability of
gravimeters would further improve sensitivities at the annual
frequency. Beyond gravimeters, searches for Lorentz viola-
tion with satellite geodesy data may be of interest. In all,
exciting prospects remain for further searches for Lorentz
violation with gravimeters and related systems.

This work was supported in part by the Carleton College
Clinton Ford Physics Research Fund.
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