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Quantum metrology calculates the ultimate precision of all estimation strategies, measuring what is their
root-mean-square error (RMSE) and their Fisher information. Here, instead, we ask how many bits of the
parameter we can recover; namely, we derive an information-theoretic quantum metrology. In this setting,
we redefine “Heisenberg bound” and “standard quantum limit” (the usual benchmarks in the quantum
estimation theory) and show that the former can be attained only by sequential strategies or parallel
strategies that employ entanglement among probes, whereas parallel-separable strategies are limited by the
latter. We highlight the differences between this setting and the RMSE-based one.
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The theory of quantum metrology [1–12] determines the
ultimate precision in any estimation. The estimation of an
unknown parameter generally requires a probe that inter-
acts with the system to be sampled: The interaction encodes
the parameter onto the probe, which is then measured.
Clearly, if one uses N independent measurements, the root-
mean-square error (RMSE) in the estimation scales as
1=

ffiffiffiffi
N

p
(the standard quantum limit) as dictated by the

central limit theorem. If one uses N parallel-entangled
probes or one probe sequentially N times, the error can be
reduced to 1=N (the Heisenberg bound) [4,13]. This
precision can be attained without the use of entanglement
at the measurement stage [4].
TheRMSE is, however, ill suited for digital sensors, digital

data processing, or even the digital archival of parameters,
where the number of significant digits (bits) is a more useful
figure of merit. Moreover, the techniques used in the
conventional theory [e.g., the use of maximally path-
entangled states of N photons (N00N) [14]] suffer from
ambiguities in the typical case in which a phase is estimated
[15,16], so that the reported RMSEdoes not typically refer to
the true total error in the estimation [17–19]. Finally, this
framework allows us to easily consider prior information on
the parameter (but here wewill consider only uniform prior),
whereas in the RMSE case this is highly nontrivial [20,21].
In this Letter, we overcome these problems by replacing

the RMSE (and Fisher information) with mutual informa-
tion, which can be operationally seen as the number of bits
of information that the quantum estimation strategy pro-
vides. Mutual information was used in quantum metrology
[22–24], although always in connection to the RMSE. Here
we rederive the theory from scratch, and we can use this
connection to extend the RMSE bounds based on mutual
information to more general estimation strategies. Our main
result is a purely information-theoretic quantum metrology,
obtaining also that (i) we redefine in a natural way the
concepts of the Heisenberg bound (using the Holevo

theorem) and of the standard quantum limit; (ii) for parallel
estimation strategies, the Heisenberg bound can be attained
but only in the presence of entanglement, as in the RMSE
case; (iii) as expected, for parallel strategies without
entanglement at the preparation, at most the standard
quantum limit is achievable (and entanglement at the
measurement stage is useless); (iv) instead, for sequential
strategies (where one of the probes performs most of the
samplings), the Heisenberg bound is attainable without
using entanglement, as in the RMSE case; (v) increasing
the Hilbert space dimension of the probe is helpful, in
contrast to the RMSE case where a two-dimensional
subspace is sufficient; (vi) the Heisenberg bound is
achieved by the quantum phase estimation algorithm
(QPEA) [25,26] and by the Pegg-Barnett phase states
[27], in contrast to the RMSE case [17,18,28].
Heisenberg bound and standard quantum limit.—In

quantum metrology, we estimate a parameter φ by first
preparing one or more probes into an initial state ρ0, then
evolving them by applying N times the interaction Uφ that
encodes the parameter onto the probe(s) and transforms the
state into ρφ, and finally measuring ρφ. The aim is to find
the ultimate precision attainable for the estimation strategy
as a function of N. If the probe is finite dimensional, no
estimation strategy can beat the Heisenberg bound ∝ 1=N
for the RMSE.
A natural way to extend the Heisenberg bound to an

information-theoretic setting is to use the Holevo theorem
[29], which gives the maximum number of bits I attainable
on a parameter φ encoded into a state ρφ, given the
measurement results m⃗:

Iðm⃗∶φÞ ≤ S

�X
φ

pφρφ

�
−
X
φ

pφSðρφÞ; ð1Þ

where SðρÞ ¼ −Tr½ρlog2ρ� is the von Neumann entropy and
pφ the prior probability of the parameter φ. Clearly, the
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accessible information is largest when ρφ are all pure states,
and in this case the last sum in (1) is null and theHolevobound
is attainable if the states are orthogonal. We then define the
info-theoretic Heisenberg bound as SðPφpφρφÞ. This quan-
tity scales as log2 N, since we are applying N times the same
transformation Uφ that encodes the unknown parameter φ
(Supplemental Material [30]). So the Heisenberg bound is
I ≃ log2 N, at least asymptotically for large N.
As regards the standard quantum limit, we note that any

parameter affected by statistical noise can always be esti-
mated as an average of some distribution: This underlies the
fact that all statistical errors can be reduced by repeating the
measurement and averaging the results. Then, the estimation
of an average quantity of an arbitrary probability distribution
through N data points is always limited by I ≤ 1

2
log2N, as a

direct consequence of the central limit theorem [30]. Thus,
we can use this bound as information-theoretic standard
quantum limit. The above Heisenberg bound does not fall
under this result, since in that case we are using a single-shot
estimation and not an average: Each of the N outcomes is
meaningless by itself in entangled strategies.
These definitions are consistent with the RMSE-based

ones: An error Δφ≃ 1=N leads to the expectation that
roughly log2 N binary digits of the results are reliable, and
similarly an error Δφ≃ 1=

ffiffiffiffi
N

p
leads to the expectation that

1
2
log2 N digits are reliable. Nonetheless, the RMSE and the

mutual information capture different aspects of the esti-
mation’s quality, as shown below.
Below, we show which kinds of estimation strategies

achieve these bounds. An example (the QPEA) shows that
sequential and entangled-parallel strategies can achieve
the info-theoretic Heisenberg bound. We then show that the
optimal parallel-separable strategies can attain only the
standard quantum limit. We finally discuss the role of
the probe’s dimensionality.
For the sake of simplicity, we will first restrict to two-

dimensional probes (qubits), for which Uφ ¼ j0ih0j þ
ei2πφj1ih1j (with j0i and j1i the eigenstates of the generator
of Uφ) and then separately analyze what happens in the
(finite) d-dimension case. We use finite-dimensional probes
and unitaries, so the parameter φ is periodic and we restrict
to φ ∈ ½0; 1�. As is customary in quantum metrology, we
request no prior knowledge on the parameter to be
estimated (uniform prior).
Sequential strategies.—In sequential strategies [4,26,32],

the transformationsUφ act on a single probe sequentially, and
ancillas may interact with the probe at any intermediate stage
[Fig. 1(a)]. We consider the QPEA [25,26] as an example of
the sequential strategy [Fig. 1(b)]: It needs t ¼ log2ðN þ 1Þ
qubits initialized in jþi ∝ j0i þ j1i states, where the zeroth
qubit is subject toUφ once, and the jth qubit is subject toUφ

2j times. The t qubits then undergo a quantum Fourier
transform (QFT) and are measured in the computational
basis, yielding a t-bit number m, from which φ can be
estimated asm=2t. One can see that the QPEA is a sequential

strategy by considering one of the qubits as the probe and the
others as ancillas and inserting appropriate swap unitaries to
swap the ancilla states and the probe state (the zeroth swap
after a single Uφ action, the jth after 2j actions) [26].
To evaluate how many of the bits of m are reliable, one

needs to calculate the mutual information Iðm∶φÞ, using
the QPEA conditional probability

pðmjφÞ ¼ sin2½πðN þ 1Þφ�
ðN þ 1Þ2sin2fπ½φ −m=ðN þ 1Þ�g : ð2Þ

The mutual information obtained from it has an asymptotic
scaling in N given by [30]

Iðm∶φÞ → log2N − 2þ 2
γ þ lnð2Þ − 1

lnð2Þ ≃ log2N − 1.22;

ð3Þ
where γ is the Euler-Mascheroni constant. Namely, it
(quickly) asymptotically achieves the info-theoretic
Heisenberg bound, apart from a small additive constant;
see Fig. 2.
The QPEA is known to also achieve the best estimation

in terms of a window function cost [26], but it cannot
achieve the RMSE-based Heisenberg bound unless one
repeats it a few times [17–19].
Parallel-entangled strategies.—The proof that parallel-

entangled strategies can achieve the mutual-info Heisenberg
bound is simple, since one can easily transform the
sequential strategy detailed above into a parallel one by
entangling the probes; see Fig. 1(c). This means that one uses
N probes grouped in N00N states of increasing numbers of
bits: j0iþj1i, j00i þ j11i;…, j0i2j þ j1i2j ;…. When these
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FIG. 1. Sequential and parallel-entangled strategies. (a) Sequen-
tial strategy, where a single probe (large triangle) samples N
unitaries Uφ (black boxes) sequentially. Ancillary systems (small
triangles) may interact through arbitrary intermediate unitaries
(gray squares). (b) QPEA. To see that it is equivalent to a
sequential strategy [26], where the last unitary is the inverse
quantum Fourier transform (QFT†), use intermediate unitaries
that swap the state of the ancillas with the state of the probe. The
output (measured in the computational basis) is a t-bit digital
estimate of the parameter φ with t ¼ log2ðN þ 1Þ. (c) Parallel
QPEA, which uses entangled N00N states (dashed boxes)
composed of 1; 2; 4;…; 2t−1 qubits. The circles represent CNOT
gates that remove the entanglement, and the cups represent the
discarding of qubits in the state j0i.
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log2ðNþ1Þ groups interact in parallel with the N trans-
formationsUφ, the jth group acquires a phase of 2π2jφ, the
same as the corresponding probe in the QPEA strategy in
Fig. 1(b). A simple network of controlled-NOT gates
can transfer this phase to one of the probes in each group,
and the other probes in the group are discarded. So the input
to the final quantum Fourier transform is identical to the one
of the conventional QPEA. Thus, both the output proba-
bility and the mutual information are the same as the ones
calculated above: Also, the parallel-entangled strategy can
achieve the Heisenberg bound (apart from a small additive
constant).
Note that the use of controlled-NOT gates after the action

of the transformations Uφ imply that this procedure
requires an entangled detection strategy (in contrast, the
QFT does not require entanglement among probes [33]). It
is still an open question whether a parallel-entangled
strategy can achieve the info-theoretic Heisenberg bound
with a separable detection, as is the case for the RMSE
bound. The Heisenberg bound is not achieved [30] if one
uses the same detection strategy as in the RMSE case
(namely, projecting each probe onto the j�i ∝ j0i � j1i
states) or if one employs the single-qubit optimal strategy
according to Davies’s theorem (see below).
Parallel-separable strategies.—To prove that without

entanglement the parallel strategies cannot achieve the
Heisenberg bound, one needs to analyze the optimal
strategy and show that it can achieve only the standard
quantum limit (whereas to prove that the sequential and
entangled strategies can achieve the Heisenberg bound, we
merely had to exhibit an example, the QPEA above).
In the separable case, the optimal input state for each

qubit probe is an equatorial state, such as ðj0i þ j1iÞ= ffiffiffi
2

p
,

which is evolved by Uφ into jφi ¼ ðj0i þ ei2πφj1iÞ= ffiffiffi
2

p
.

Indeed, equatorial states maximize the distinguishability
between the input and output. The N parallel probes after
the Uφ evolutions emerge in a joint state

jφi⊗N ¼
XN
j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N

�
N

j

�s
ei2πjφjSji; ð4Þ

where jSji is the normalized symmetric state obtained by
summing over all possible permutations with j ones; e.g., for
N ¼ 4, jS1i∝ j0001iþj0010iþj0100iþj1000i, and jS2i ∝
j0011i þ j0101i þ j0110i þ j1001i þ j1010i þ j1100i.
To obtain the positive operator-valued measure (POVM)

that maximizes the mutual information on this state, we use
Davies’s theorem [34]: If the input is covariant with respect
to a group that admits an irreducible unitary representation
Uφ, then there exists a unit vector jri such that the mutual
information is maximized by the POVM

Πϕ ¼ d
jGjUϕjrihrjU†

ϕ; ð5Þ

where d is the dimension of the system Hilbert space and
jGj is the number of elements in the group [34]. Davies’s
theorem can be extended to continuous parameters φ by
requiring the compactness of the group [35] and to unitary
representations that are irreducible only on equatorial
states [36].
Since the state jφi⊗N spans only the (N þ 1)-dimen-

sional symmetric subspace of the N-qubit space, we can
limit ourselves to it. So the optimal POVM is given by (5)
with d ¼ N þ 1, jGj ¼ 1, and jri a state in the symmetric
subspace: jri ¼ P

jαjjSji. Apart from an irrelevant phase
factor, this state is uniquely determined by the POVM’s
normalization condition

R
dϕΠϕ ¼ 1 (see [37]). Indeed,

this condition is satisfied only if jαjj ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
for all j.

Hence, an optimal POVM is

Πϕ¼ðNþ1Þjϕihϕj; with jϕi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Nþ1

p
XN
n¼0

ei2πnϕjSni:

ð6Þ
Then, the conditional probability of finding the result ϕ
(which is our estimate of the unknown parameter) when the
true value is φ is

pðϕjφÞ ¼ ðhφj⊗NÞΠϕðjφi⊗NÞ ð7Þ

¼
XN
n;n0¼0

1

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N

n

��
N

n0

�s
ei2πðϕ−φÞðn−n0Þ; ð8Þ

whence one can calculate the mutual information Iðϕ∶φÞ.
Its asymptotic scaling [30] is

Iðϕ∶φÞ → 1

2
log2N þ 1

2
log2

2π

e
≃ 1

2
log2N þ 0.6; ð9Þ

namely, the standard quantum limit for the mutual infor-
mation (apart from a small additive constant). The explicit
evaluation of Iðm∶φÞ shows that it quickly attains the
asymptotic expression [Fig. 3(a)]. This proves that sepa-
rable probes can achieve at most the standard quantum

(b)(a)

FIG. 2. Heisenberg bound of the QPEA. (a) Plot of the mutual
information Iðm∶φÞ as a function of N (blue line) and of the
function log2 N (dashed red line). Note that I quickly acquires the
same linear dependence in a log scale as the Heisenberg bound.
The inset shows the same behavior for large N. (b) Ratio between
the mutual information and log2N − 1.22, showing the rapid
onset of the asymptotic behavior to this quantity.
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limit: The Davies’s theorem gives the best possible esti-
mation strategy, and we have optimized the input states
only among the separable ones.
The above strategy uses separable input states but an

entangled POVMΠϕ (the states jϕi are entangled). We now
show that the standard quantum limit can be achieved also
by a strategy separable both at the input and at the
measurement. Indeed, consider the strategy in which we
measure the separable state jφi⊗N with a projective POVM
which projects onto the states j�i ∝ j0i � j1i each of theN
qubits separately. The outcomewill be a string m⃗ ofN zero-
one results corresponding to outcome “þ” or “−” at each
qubit, respectively. The probability of each outcome is
pðþjφÞ ¼ cos2ðπφÞ and pð−jφÞ ¼ sin2ðπφÞ, so the prob-
ability of obtaining the whole string m⃗ is

pðm⃗jφÞ ¼ sin2κðπφÞcos2ðN−κÞðπφÞ; ð10Þ

where κ is the number of ones in the string m⃗ (its Hamming
weight). The unknown parameter is easily estimated from
the vector m⃗ as κ=N. The marginal probability of the string
m⃗ is then

pðm⃗Þ ¼
Z

1

0

dφpðm⃗jφÞ ¼ ½2ðN − κÞ�!ð2κÞ!
22NðN − κÞ!κ!N!

; ð11Þ

whence mutual information is [30]

Iðm⃗∶φÞ ¼ N= ln 2

þ
XN
κ¼0

½2ðN − κÞ�!ð2κÞ!
4N ½ðN − κÞ!�2ðκ!Þ2 log2

ðN − κÞ!κ!N!

½2ðN − κÞ�!ð2κÞ! :

ð12Þ

The asymptotic scaling of Iðm⃗∶φÞ of Eq. (12) for large N
was numerically checked [Fig. 3(b)] and goes as
≃ logðNÞ=2 − 0.395 (the constant was evaluated numeri-
cally), as expected from the standard quantum limit.
Beyond qubits.—We now drop the assumption of two-

dimensional probes (qubits) and consider the effect of a d-
dimensional Hilbert space of the probes. In this case, we
must consider the transformation Uφ ¼ P

d−1
n¼0 e

i2πnφjnihnj,
where jni are eigenstates with eigenvalue n of the generator
H of Uφ. Intuitively, one expects that a two-dimensional
probe will give outcomes in bits (base-2 numbers) and that
a d-dimensional probe will give outcomes in base-d
numbers. We will see that this intuition is correct: One
will asymptotically gain the factor log2 d of a change of
basis in the logarithms in the mutual information definition.
We can prove this result using a d-dimensional extension of
the QPEA for the sequential and entangled protocols and
using the Pegg-Barnett states for the separable protocol
(also shown in Ref. [28]).
The QPEA for d-dimensional systems [38] is a straight-

forward extension of the QPEA. Its output is a number m
composed of t base-d digits, whence the parameter φ can be
estimated asm=dt. The conditional probability of obtaining
m given φ is

pðmjφÞ ¼ sin2ðπφdtÞ
d2t sin2½πðφ −m=dtÞ� ; ð13Þ

analogous to (2). The mutual information is then

Iðm∶φÞ ¼ tlog2dþ
Z

1

0

dφ
X
m

pðmjφÞlog2pðmjφÞ

→ tlog2d − 1.22; ð14Þ

where the asymptotic scaling is derived in the same way as
for (3). The Heisenberg bound is still achieved, since in
(14) t≃ log2 N= log2 dþ 1. The form of Iðm∶φÞ as a
function of d is the same as the one shown in Fig. 2 if
one replaces N þ 1 with dt: Compare (13) with (2). Hence,
as in the previous case, the asymptotic scaling (14) kicks in
very rapidly.
In the separable case, we can find a similar Heisenberg

bound and log2 d factor by preparing each d-dimensional
probe in the Pegg-Barnett state

P
njni=

ffiffiffi
d

p
[27], which is

evolved by Uφ into the state jφ; di≡P
ne

2πinφjni= ffiffiffi
d

p
. A

measurement that extracts information from the probe
asymptotically approaching log2 d bits is a projective
POVM onto the states jφj; di with φj ¼ j=d (with integer
j ≤ d − 1) [28]. This is equivalent to the above d-dimen-
sional QPEA for a single probe t ¼ 1, so the mutual
information of this Pegg-Barnett procedure is given by
Eq. (14) with t ¼ 1, where again we find a log2 d factor.
Hence, also in the separable case, an increase in the probes
dimension leads to a log2 d increase in precision.

(b)(a)

FIG. 3. Standard quantum limit for unentangled probes. (a) Plot
of the mutual information Iðϕ∶φÞ relative to the optimal POVM
(6), which uses entangled measurements, as a function of N (blue
line) and of the standard quantum limit log2ðNÞ=2 (cyan dashed
line). The fluctuations are due to the Monte Carlo integration
used here. (b) Plot of the mutual information Iðm⃗∶φÞ of (12),
relative to the separable POVM that projects onto j�i each probe,
as a function of N (blue line) and of the standard quantum limit
log2ðNÞ=2 (cyan dashed line). The inset shows the large-N
scaling. Both cases asymptotically scale at the standard quantum
limit (apart from a small additive constant).
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Note that, also in the RMSE case, an increase in the
probe dimension increases the precision, because we can
access larger eigenvalues of the generator of Uφ. However,
in that case, one can always restrict the probes to a two-
dimensional subspace, spanned by the eigenvectors j0i and
jd − 1i relative to the minimum and maximum eigenvalues
of the generator H [4]. In the mutual-info case, this is not
true anymore: The above log2 d increase in precision is
absent if we limit the probe states to the subspace spanned
by these two states [30]. Interestingly, the Pegg-Barnett
states are known to be useless in achieving the RMSE-
based Heisenberg scaling in the dimension d [39], in
contrast to the above log2 d scaling result. These two facts
emphasize that, although RMSE and mutual info give
consistent indications on the measurement precision, they
really capture different aspects of it.
Conclusions.—We have given an information-theoretic

quantum metrology, leading to the main results of ordinary
RMSE-based quantum metrology but highlighting some
peculiar differences from it. We did not consider the effect
of noise and experimental imperfections here, leaving it to
future work, since this substantially complicates the theory,
as happens in the RMSE case, e.g., [8,10,40–43].
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