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Periodic driving of optical lattices has enabled the creation of novel band structures not realizable in
static lattice systems, such as topological bands for neutral particles. However, especially driven systems of
interacting bosonic particles often suffer from strong heating. We have systematically studied heating in an
interacting Bose-Einstein condensate in a driven one-dimensional optical lattice. We find interaction
dependent heating rates that depend on both the scattering length and the driving strength and identify the
underlying resonant intra- and interband scattering processes. By comparing the experimental data and
theory, we find that, for driving frequencies well above the trap depth, the heating rate is dramatically
reduced by the fact that resonantly scattered atoms leave the trap before dissipating their energy into the
system. This mechanism of Floquet evaporative cooling offers a powerful strategy to minimize heating in
Floquet engineered quantum gases.
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Introduction.—Floquet engineering, the coherent control
of quantum systems by means of time-periodic driving,
enables the realization of novel band structures and many-
body phases beyond what is possible in static systems
[1–12]. It has become an important tool for studies
of quantum gases [13], where it, e.g., enables the breaking
of time-reversal symmetry and thereby the realization of
topological bands even for charge-neutral particles [5,
10–12]. In the form of infrared laser pulses, time-periodic
driving can give rise to novel effects in traditional condensed
matter systems, such as graphenelike systems [14–16] or
high-temperature superconductors [17–19]. It also lies at the
heart of the recently realized discrete time crystals [20–25].
Despite those recent accomplishments, successfully com-

bining periodic driving with interactions remains a major
experimental challenge: In a driven system, energy is not
conserved, as the system can absorb or emit energy from or
into the drive. Therefore, for any fully ergodic driven
system, there can only be one steady state, namely, the
fully mixed density matrix corresponding to an infinite
temperature state [26–39]. While this scenario could be
avoided by using nonergodic systems, such as, e.g., many-
body localized states [40], their use cannot solve the
problem, in general, as many interesting phases, such as
fractional quantum Hall states, are typically ergodic.
Therefore, one has to find setups and parameter regimes
that allow experimental studies of novel, driven phases on
intermediate time scales before the unavoidable heating
dominates.
In this work, we experimentally study loss rates of

condensed atoms in a driven optical lattice as a function

of both the driving and interaction strength and can thereby
distinguish single-particle from interaction effects. Single-
particle heating occurs via discrete single- or multiphoton
interband resonances [41] that can easily be avoided. This is
in contrast to two-particle processes, which in one- or two-
dimensional lattices are always resonant, as collisions can
convert arbitrary energies into transverse excitations
[32,34,35]. This is in stark contrast to three-dimensional
lattices, where these processes can be suppressed
[28,32,34]. We focus on the two experimentally most
relevant driving regimes: For low shaking frequencies ω
much smaller than the resonance frequency to the first
excited band but above the bandwidth of the lowest band, the
tunneling matrix element of the lowest band is effectively
renormalized by a Bessel function (corresponding to
dynamic localization [42,43]). At the same time, multi-
photon resonances are weak, as they require many photons.
This regime is typically employed for engineering artificial
gauge fields [3,5,12]. The second regime lies between the
two lowest single-photon single-particle resonances. Here,
the dispersion relation can acquire two separate minima that
can be exploited to study the formation of symmetry-broken
domains [4,6]. We find that for large driving frequencies
heating is strongly reduced by the fact that scattered particles
with energy ∼ℏω typically leave the trap before dissipating
the absorbed energy into the system.
Experimental setup.—We load an almost pure Bose-

Einstein condensate (BEC) of about 4 × 105 39K atoms
into the lowest band of a one-dimensional lattice with
lattice constant a ¼ 425 nm, which is created by inter-
fering two blue-detuned laser beams with a wavelength of
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λ ¼ 736.8 nm at an angle of θ ¼ 120°; see Fig. 1(a).
Then, we shake the lattice position by periodically
modulating the frequency of one of the two laser beams.
The atoms feel a periodic inertial force in the frame
comoving with the lattice, which is given by
FxðtÞ ¼ −ðK=aÞ cosðωtÞ, where we have introduced the
driving amplitude K. In order to avoid strong, non-
adiabatic excitations to higher bands during the switch
on of the modulation, we continuously ramp the driving
amplitude in 10 ms to its desired value. After a variable
shaking duration, we determine the heating and losses
induced by the drive by measuring the remaining atom
number in the BEC. To this end, we abruptly stop the
drive after an integer number of shaking cycles, immedi-
ately followed by band mapping in the static lattice and
15 ms of time-of-flight (TOF). This TOF is long enough
to dilute any thermal background such that we can

reliably determine the remaining number of condensed
atoms. For all measurements, we use a lattice depth of
V0 ¼ 11.0ð3ÞEr, where Er ¼ h2=ð8Ma2Þ ≈ h × 7.1 kHz
is the effective recoil energy of this lattice with M being
the mass of 39K. In this static lattice, the first interband
excitation at zero momentum appears at a frequency
of ω10 ¼ 2π × 41.6ð5Þ kHz.
Frequency scan.—Single-particle transitions occur only

at specific resonanceswhere the shaking frequencyω fulfills
a multiphoton resonance condition νℏω≃Δb0ðqÞ, with ν
being an integer and Δb0ðqÞ denoting the separation of the
lowest band to the bth excited band at a given quasimo-
mentum q. To ensure that we avoid these resonances, we
measure the remainingBECatomnumber after shakingwith
variable frequency at a dimensionless driving strength α≡
K=ðℏωÞ and scattering length as ¼ 60a0, with a0 being
Bohr’s radius, using a Feshbach resonance at 400G [44]; see
Fig. 1. The solid blue line shows the result of a numerical
single-particle simulation assuming a Gaussian width of the
BEC in momentum space of Δq ¼ 0.2π=a (for the method,
see [41,45]). While the resonances at large frequencies are
clearly visible, multiphoton resonances at small driving
frequencies are highly suppressed. For our subsequent
lifetimemeasurements, we chooseωl ¼ 0.084ω10 andωh ¼
1.27ω10 (green dashed lines) as low and high frequency, far
away from all single-particle resonances.
Experimental loss rates.—The total loss rate of con-

densate atoms in our system is given by summing over
background losses in the static system, characterized by a
lifetime τ, and heating and losses induced by lattice
shaking. We assume that all losses happen on a sufficiently
slow time scale such that the system heats up but stays in
global thermal equilibrium and describe the condensed part
using the Thomas-Fermi approximation. We have verified
independently that the cloud size indeed shrinks according
to the decreasing number of condensed atoms N0 [45].
Within this approximation, the driving-induced loss rate of
condensed atoms due to two-particle collisions takes the
form −κN7=5

0 [45]. Including the background losses −N0=τ
of the static system, we obtain

N0ðtÞ ¼ N0ð0Þe−t=τ½1þ N0ð0Þ2=5κτð1 − e−2t=ð5τÞÞ�−5=2:
ð1Þ

We measure τ independently for each scattering length in
the static lattice. In order to form a more intuitive quantity,
we define a scaled loss rate ~κ ¼ κN0ð0Þ2=5 such that the
initial driving-induced losses scale as ∝ ~κN0ð0Þ. As shown
in Fig. 2, both stronger interactions and larger driving
strengths lead to dramatically higher loss rates for the BEC.
Theoretical description.—In order to identify and esti-

mate the dominant heating channels associated with two-
particle scattering, we start by describing a homogeneous
system in the Floquet space of time-periodic states, where
an integer Fourier index m describes the change in the
“photon” number relative to a large classical background;

(a)

(b)

(c)

FIG. 1. Schematic of the experiment and frequency scan.
(a) Two lattice beams with a linear out-of-plane polarization
intersect at an angle of 120° to form a one-dimensional lattice of
“pancakes.” By periodically modulating the frequency of one of
the lattice beams, we can shake the lattice, i.e., modulate its
position. (b) Normalized atom number after modulating for 50
(for ω=ω10 > 0.7) or 100 ms (for ω=ω10 < 0.7) with variable
frequency at a driving strength of α≃ 0.9. Error bars indicate the
standard error of the mean from four measurements per data
point. The solid blue line shows the theoretically expected single-
particle excitations to higher bands. Thin lines mark the reso-
nance positions of single- and multiphoton transitions to higher
bands labeled by ðb; νÞ. In the frequency region from roughly
0.7ω10 to 1.1ω10, we observe a splitting of the BEC due to two
degenerate minima in the lowest dressed band, which is included
in the theory curve. The insets show raw quasimomentum images
of the BEC. (c) Enlargement into the regime of small shaking
frequencies with α ¼ 2.2 and 200 ms shaking duration.
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i.e., −m counts the number of absorbed photons. In this
dressed-atom-like picture, the dynamics is generated by the
quasienergy operator Q. Within the subspace of a given
relative photon numberm, it acts likeQm;m ¼ Hð0Þ þmℏω,
whereas the coupling between subspaces m0 and m corre-
sponds to an ðm −m0Þ photon process which is captured
by Qm0;m ¼ Hðm0−mÞ. Here HðνÞ ¼ ð1=TÞ R T

0 dteiνωtHðtÞ
denotes the νth Fourier component of the time-dependent
Hamiltonian HðtÞ. The time-averaged Hamiltonian Hð0Þ
describes a dispersion relation εbðkxÞ þ E⊥ðky; kzÞ, with
effective band structure εbðkxÞ and transverse kinetic
energy E⊥ ¼ ℏ2ðk2y þ k2zÞ=ð2MÞ, as well as interactions.
In Fig. 3, we sketch the lowest two bands b ¼ 0, 1 for the

relative photon numbersm ¼ 0, −1 (solid and dashed lines,
respectively), given by εbðkxÞ þmℏω. The diagrams depict
three examples of relevant scattering channels, where two
particles (small spheres) are excited out of the condensate
into the states jb; ki and jb0;−ki absorbing ν ¼ m −m0
photons, as indicated by the number of particles transferred
to the dashed bands [ν ¼ 1 in Fig. 3(b) and ν ¼ 2 in
Figs. 3(a) and 3(c)]. The resonance condition for two-
particle excitations can be written as

εbðkxÞ þ εb0 ð−kxÞ − νℏω − 2ε0ð0Þ ¼ −2E⊥ ≤ 0: ð2Þ

Here, we have separated the transverse kinetic energy
2E⊥ ¼ E⊥ðky; kzÞ þ E⊥ð−ky;−kzÞ created in the scatter-
ing process on one side of the equation. As there is no
lattice potential along these directions, the transverse
kinetic energy can take arbitrary non-negative values. As
a consequence, in Fig. 3 all states with a total energy below
the original BEC are accessible.
For the smaller driving frequency ωl, the tunneling in the

lowest band is modified by a Bessel function Jeff ¼
J 0ðαÞJ0 [45,52], where J νðαÞ is a Bessel function and
J0 the tunneling matrix element of band b ¼ 0. In this
regime, scattering particles to an excited band would
require absorbing a large number of photons. Therefore,
the dominant heating channel is intraband scattering with
small ν. Processes with odd ν are forbidden by symmetry
for a condensate with zero momentum and acquire finite
values only due to the momentum spread of the condensate
[45]. For a ν-photon scattering process, the matrix element
scales like ∼ℏ2asn0J0J νðαÞ=ðνℏωMÞ [45], with a prefac-
tor that for odd ν is about 5 times smaller than for even ν at
the measured momentum spread of 0.2π=a and where n0 is
the condensate density.
For the larger driving frequency ωh, interband scattering

dominates. In this regime, single-photon single-particle
interband coupling is strong (with matrix elements ∼αEr
[45]) but off resonant. This leads to a perturbative admixture
of states from the first excited band (b ¼ 1) withm ¼ −1 to
the lowest band (b ¼ 0) with m ¼ 0 and vice versa. As a

(a)

(b) (e)

(c) (f)

(d)

FIG. 2. Loss rates in the presence of periodic driving. (a),
(d) Effective loss rates for different driving amplitudes and
scattering lengths. Each dot corresponds to a single lifetime
measurement. The shaking frequency is (a)–(c) ω ¼ ωl and (d)–
(f) ω ¼ ωh. (b),(e) Crosscuts at fixed scattering lengths. The solid
lines correspond to the theoretically predicted scattering rates,
and error bars indicate fit uncertainties. (c),(f) Corresponding
crosscuts at fixed driving strengths. Theory lines in (b),(c) assume
fβℏω ¼ 10 to account for the thermalization of scattered atoms
(see the text).

(a) (b) (c)

0 q

b=0

b=1

FIG. 3. Examples of two-particle scattering channels. The
lowest two bands of a schematic lattice dispersion are sketched
by solid lines, and Floquet modes shifted by −ℏωðm ¼ −1Þ are
depicted by dashed lines. The condensate is represented by a
large sphere, and scattered particles by small spheres. The pair of
yellow wiggly arrows in (a) denotes a two-photon scattering
process, where the atoms absorb two photons, while the red
wiggly lines in (b),(c) denote a zero-photon (ordinary) collision
between two atoms, and blue arrows describe single-photon
interband transitions. (a) When the driving frequency is much
smaller than the band gap, the dominant loss process are two-
photon intraband collisions. (b),(c) For driving frequencies larger
than the band gap, the leading (subleading) excitation channels
combine one (two) single-photon interband transitions with zero-
photon collisions. Note that only one photon number m is
associated with the whole system and not one per particle as
suggested, for simplicity, in the diagrams.
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result of this coupling, already ordinary zero-photon colli-
sions,which are stronger than ν-photon scattering processes,
give rise to excitations by scattering atoms between these
dressed bands.Another consequence of this admixture of the
highly dispersive first excited band to the rather narrow
lowest band is the formation of a double-well structure
within the lowest band for sufficiently large driving
strengths α [4,6,45]. As a result, the condensate reforms
at the new minima of the dispersion at finite quasimomenta;
see the insets in Fig. 1(b). We compute the matrix elements
for resonant interband excitations using degenerate pertur-
bation theory. In leading order, we encounter three different
single-photon (ν ¼ 1) processes, such as the one depicted in
Fig. 3(b), involving a single-particle single-photon inter-
band transition and a zero-photon two-particle scattering
event. Their matrix elements scale like ∼ℏ2asn0Erα=
ðℏωMÞ. The leading correction stems from two-photon
(ν ¼ 2) processes, an example of which is shown in
Fig. 3(c), giving rise to matrix elements that are a factor
of αEr=ðℏωÞ smaller [45].
Applying Fermi’s golden rule and integrating over the

time-dependent Thomas-Fermi profile in a local density
approximation, we derive the rates Γν of atoms scattered out
of the condensate via ν-photon processes [45] and find that
they are proportional to ðasN0Þ7=5. For the lower driving
frequency ωl, the scattered particles will not have enough
energy to leave the trap and will dissipate their entire energy
into the system via ordinary (zero-photon) collisions. This
excites additional atoms out of the condensate, leading to a
decay rate for condensed atoms _N0 ¼ −fβℏω

P
ννΓν=2

with inverse temperature β and a numerical factor f ∼
Oð1Þ that depends on the details of the system [45].
Because of the finite momentum of these newly created
thermal atoms, ν ¼ 1 scattering now becomes dominant,
and they will absorb photons at an even faster rate than
condensed atoms. In a truly closed system, this form of
heating would scale linearly with the photon energy ℏω.
Because of the finite trap depth, however, the system is
effectively open, and, for the higher driving frequency ωh,
scattered particles typically have sufficient energy to quickly
leave the trap without dissipating the absorbed energy. In
this regime, we expect _N0 ¼ −

P
νΓν.

Comparison between theory and experiment.—Because
of the thermalization of the absorbed photon energies
described above, the measured loss rates of condensed
atoms at low driving frequency ωl will be larger than the
total scattering rate

P
νΓν [Figs. 2(a)–2(c)]. We observe a

factor of fβℏω ≈ 10, which provides a lower bound for the
temperature of the condensate. Assuming for simplicity an
ideal homogeneous gas results in a realistic lower bound of
15 nK.While typical temperatures of the BECwill likely be
higher [45], the differences are most likely due to resonant
scattering of thermal atoms, which is not included in the
theory. In contrast, for a driving frequency of ωh, shown in
Figs. 2(d)–2(f), the loss rate of condensed atoms coincides

with the total scattering rate, since the absorbed photon
energy is carried away with the scattered particles leaving
the trap. This highlights the advantage of working at larger
driving frequencies.
Figures 2(c) and 2(f) show a rather good general agree-

ment with the expected scaling with the scattering length of
_N0 ∝ a7=5s , demonstrating that the dominant loss mecha-
nisms are indeed interaction driven and that the Thomas-
Fermi local-density approximation is consistent with our
data.While the data at large driving frequencyωh follow the
theory rather well for not too strong interactions and driving,
we observe increasing discrepancies for both larger scatter-
ing lengths and larger driving strengths.When themean free
path of excited atoms (∝ 1=a2s) becomes on the order of the
size of the BEC, excited atoms will undergo additional
collisions while leaving the cloud, thereby giving rise to an
additional loss of condensate atoms similarly to the low-
frequency case [45]. This is most clearly visible when
plotting the data vs scattering length; see Fig. 2(f), where
for weak driving a discrepancy to the a7=5s scaling can be
observed for scattering lengths larger than ≃100a0. For
higher driving strengths, we expect the onset of additional
scattering channelswith ν > 2, which are not included in the
theory for ωh [45]. We note that two degenerate minima
appear in the lowest band forα > 0.7, giving rise to the small
kinks in the expected loss rates in Fig. 2(e).

(a)

(b)

FIG. 4. Loss rates for large driving strengths and small
frequencies. (a) When scanning the driving strength α at
frequency ωl, we observe peaks in the loss rate whenever the
effective tunneling Jeff ¼ J0 · J 0ðαÞ goes through zero (dashed
lines). The insets sketch the lowest band for positive and negative
tunneling. (b) For a fixed driving strength α ¼ 1.1, we observe a
peak in the loss rate for driving frequencies close to the
bandwidth of the lowest band. The solid line shows the theory
scaled by fβℏω with a temperature of 15 nK (see the text). The
dashed black lines indicate one (two) times the effective band-
width, below which the number of accessible states for two-
(single-) photon scattering becomes reduced [45]. The dashed
green line marks the frequency ωl. Error bars indicate fit errors.
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We also measured the loss rates for large driving
amplitudes and low-frequency ωl; see Fig. 4(a). We can
observe clear maxima in the loss rate whenever the effective
tunneling matrix element Jeff is close to zero and attribute
them to zero-photon scattering in the effectively flat band.
Interestingly, the loss rate decreases again once the sign of
the effective tunneling matrix element Jeff changes.
Figure 4(b) shows the loss rate for various frequencies
close to the bandwidth. Since there are fewer modes
available for frequencies below the bandwidth of the lowest
band, a clear decrease in the loss rates can be observed [45].
Conclusion and outlook.—We have measured the loss

rates of an interacting BEC in a driven one-dimensional
optical lattice. They approximately scale with the inter-
action as a7=5s , in agreement with a theoretical description
based on a Thomas-Fermi approximation and Fermi’s
golden rule. For large driving frequencies, scattered par-
ticles can leave the trap and carry away the absorbed energy
quanta ℏωh. This mechanism of continuous Floquet evapo-
rative cooling can act as a powerful general strategy to
reduce heating rates in Floquet engineered quantum gases.
Furthermore, the two-particle scattering processes consid-
ered here rely on exciting transverse motion and might
therefore be absent in a three-dimensional lattice. Another
intriguing possibility is the use of nonergodic or many-
body localized systems, where the dynamics can be
immune to these heating processes.
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