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We present a simple method to control the position of ellipsoidal magnetic particles in microchannel
Poiseuille flow at low Reynolds number using a static uniform magnetic field. The magnetic field is utilized
to pin the particle orientation, and the hydrodynamic interactions between ellipsoids and channel walls
allow control of the transverse position of the particles. We employ a far-field hydrodynamic theory
and simulations using the boundary element method and Brownian dynamics to show how magnetic
particles can be focused and segregated by size and shape. This is of importance for particle manipulation in
lab-on-a-chip devices.
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Nowadays microscopic lab-on-a-chip devices have
become powerful tools to analyze, manipulate, and control
droplets [1–5], biological particles [6–8], and active col-
loids [9–11]. Different particle types can be separated in
microfluidic channels where a steady Poiseuille flow is
imposed [12,13]. In particular, positional control along the
transverse direction of the channel is desirable in order to
transport particles to outlets at different target positions.
Under high Reynolds number flow, inertial forces lead to a
migration of particles towards stable positions [14,15] that
can be manipulated by feedback control [16]. In contrast,
at low Reynolds number, which is the usual regime at the
micron scale, spherical and elongated particles cannot
achieve net transverse motion in the absence of external
forces [17–20]. In this work, we focus on this low Reynolds
number regime.
In lab-on-a-chip devices, magnetic forces are commonly

used to manipulate the position of microscopic particles
[21–23] or artificial microswimmers [24,25]. For example,
the segregation of different particle types can be realized by
applying an external magnetic field gradient, which essen-
tially acts as a body force [22]. Although this method can
be used to segregate different types of particles, it cannot
be used to focus particles to a specific transverse target
position. When a uniform magnetic field is applied instead
of a gradient field, the particle will only experience a torque
but no force; i.e., a uniform field is useful to change the
orientation of the particle [26], but it is not an intuitive
way to achieve translation. Interestingly, Zhou et al. [27]
recently showed that paramagnetic ellipsoidal particles
can be focused to the channel center by applying a static
uniform magnetic field perpendicular to the flow. They
managed to achieve net motion away from the wall by
breaking the symmetry of cyclic up-down motion [19] of
the ellipsoid.
Here we show that the particle position can be controlled

not only to the channel center, but to arbitrary target channel
positions by using a static uniform magnetic field to pin the

orientation of the magnetic particles. First, we show that the
particle will continuously move either towards or away from
the wall, purely by hydrodynamic particle-wall interactions.
Second, we demonstrate that the ellipsoidal particle can be
focused to arbitrary transverse target positions just by a
simple manipulation of the magnetic field.
We consider a permanent magnetic particle with prolate

shape of volume 4πa3=3, suspended in a Newtonian fluid
of viscosity η and density ρ. The particle has magnetization
M, and it is assumed to be neutrally buoyant for simplicity.
It has one semiaxis of length b1 ¼ aα2=3 and two of
length b2 ¼ aα−1=3, where α is the particle’s aspect ratio
α ¼ b1=b2 > 1. The particle has a magnetic moment m ¼
ðm cosϕp;m sinϕp; 0Þ where m ¼ 4πa3M=3 is the mag-
netic moment parallel to the particle’s major axis and ϕp is
the particle orientation angle [Figs. 1(a) and 1(b)]. The
particle is initially placed a distance y0 away from a infinite
plane wall located at y ¼ 0, and it experiences a magnetic
torque Tm ¼ m × B due to a uniform external field B
applied to the whole domain. We assume that B is oriented
in the (x, y) plane, B ¼ ðB cosϕB; B sinϕB; 0Þ, where B is
the strength and ϕB the orientation of the field which are
both kept constant [Fig. 1(a)]. Note that we only consider
in-plane motion of the particle in this Letter, because a
strong magnetic field will orient the major axis of the
particle in-plane [28]. We introduce a nondimensional
parameter β that describes the strength of the magnetic
torque compared to the hydrodynamic torque as

βðyÞ ¼ mB
ηa3 _γðyÞ ¼

4πMB
3η_γðyÞ ; ð1Þ

where _γðyÞ is the local shear rate of the flow around the
particle. For example, when we assume that the particle
magnetization μ0M¼10−3 T, where μ0 ¼ 4π × 10−7 N=A2

is the permeability of free space, particle size a ¼ 10−5 m,
water viscosity η¼10−3 Pas, water density ρ ¼ 103 kg=m2,
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shear rate _γ¼102 s−1, and magnetic field B¼1.0−4–10−2T,
the particle Reynolds number is Re ≈ 10−2 and β ≈ 100–102.
We use the boundary element method [29–31] to solve for

particle trajectory. When inertial effects are negligible, the
flow field v of a given point x under Stokes flow can be
described using a boundary integral formulation [29]:
viðxÞ ¼ v∞i ðxÞ − ð1=8πηÞ RA Gijðx; yÞqjðyÞdA, where G
is the Green’s function, v∞ is the background flow, and q
is the viscous traction acting at a point y on the particle
surface. The Blake tensor [32] is used for the Green’s
function Gij to account for the walls. Integrating the traction
force q on the surface of ellipsoid A gives the hydrodynamic
force Fh and torque Th acting on the particle. As the system
is force- and torque-free, these satisfy Fh ¼

R
A qdA ¼ 0,

Th þ Tm ¼ R
Afq × ðx − x0ÞgdAþm ×B ¼ 0, where x0

is the hydrodynamic center of the particle [33]. A given
surface material point xs on the ellipsoid moves with a
velocity vðxsÞ ¼ UþΩ × ðxs − x0Þ, where U, Ω are the
translational and rotational velocity of the particle, respec-
tively. The surface of the ellipsoid is divided into NE ¼ 512
triangular elements and NN ¼ 258 nodes. The velocities
are obtained by solving the dense matrix Ax ¼ b with a
known vector b ¼ ðv∞;Fh;ThÞ and an unknown vector
x ¼ ðq;U;ΩÞ, andA is a matrix with size ð3NN þ 6Þ based
on the equations above [30]. The particle position is updated
using the first-order Euler method with a time step
_γΔt ¼ 0.01. The software is written in CUDA and all
processes are parallelized [34].
First, we show that transverse motion can be manipu-

lated by pinning the rotational motion of the particle in
shear flow, v∞x ¼ _γy [_γðyÞ ¼ const]. The rotational motion
of an ellipsoidal particle subjected to shear and a magnetic
field was discussed in Ref. [28], in the absence of a wall.
The authors showed that the particle moves in the shear
plane for sufficiently large β and reaches a stable angle ϕ�

p,
where it is pinned by the magnetic field. The general
expression for the in-plane rotational velocity is

1

_γðyÞ
_ϕp ¼ βðyÞ

8π
FðαÞ sinðϕB − ϕpÞ −

1

2
½1 − JðαÞ cos 2ϕp�;

ð2Þ
and ϕ�

p is obtained by solving _ϕp ¼ 0. Note that the first
term of Eq. (2) is due to the magnetic torque aligning the
particle towards the field orientation ϕB, and the second
term is simply Jeffrey’s rotation of an ellipsoid in flow [35]
with JðαÞ ¼ ðα2 − 1Þ=ðα2 þ 1Þ and FðαÞ¼ ½3=2ðα2−α−2Þ�
f½ð2α−α−1Þ=ð

ffiffiffiffiffiffiffiffiffiffiffiffi
α2−1

p
Þ�lnðαþ

ffiffiffiffiffiffiffiffiffiffiffiffi
α2−1

p
Þ−1g [36].

Figure 1(c) is a schematic of the motion of an ellipsoid in
shear flow at different β, now in the presence of a surface.
In the absence of a magnetic field (β ¼ 0) the particle
rotates and oscillates along the y direction, but has no net
displacement along y [19]. However, when the magnetic
field is strong enough to pin the orientation, the ellipsoid
either continuously travels upwards or downwards. The

transverse motion can be explained by hydrodynamic
interactions between the pinned ellipsoid and the wall.
The wall can be considered to act as an image stresslet
[37–39], and the leading order contribution to the lift
velocity Uy arises from the stresslet component Syy [32]
evaluated for the stable angle ϕ�

p:

Uyðy;ϕ�
pÞ ¼ −

9

64πη
PðyÞSyyðϕ�

pÞ; ð3Þ

where PðyÞ ¼ 1=y2, and to leading order it is sufficient to
approximate Syyðϕ�

pÞ by S∞yyðϕ�
pÞ, which is its value in free

space y → ∞ [33], given by

S∞yyðϕ�
pÞ

ηa3 _γ
¼ AðαÞ sin 2ϕ�

p þ BðαÞ sin 4ϕ�
p; ð4Þ

where AðαÞ ¼ πα2ð5XM − 5ZM þ 12YHÞ=6, BðαÞ ¼
−5πα2ð3XM − 4YM þ 12ZMÞ=12 and XM, YM, ZM, YH

are shape functions [33,40] that are only a function of
the eccentricity e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α−2

p
. Since jAðαÞj ≫ jBðαÞj [see

inset of Fig. 1(d)], the stresslet changes its sign only for
sin 2ϕ�

p ¼ 0 as shown in Fig. 1(d). Therefore, the particle
moves away from the wall Uy > 0 for sin 2ϕ�

p > 0, while
it moves towards the wall Uy < 0 for sin 2ϕ�

p < 0.
Figure 1(e) shows simulation and the theoretical results
for the lift velocity under strong orientational pinning

(c)

(d)
(e)

(a) simple shear + 1 wall (b) Poiseuille + 2 walls

FIG. 1. (a)–(b) 2D schematic showing the problem geometry
where m ¼ ðm cosϕp; m sinϕp; 0Þ is the magnetic moment of
the ellipsoidal magnet and B ¼ ðB cosϕB; B sinϕB; 0Þ is the
applied uniform magnetic field. Circles on the particle show
the direction of the magnetic moment. (c) Schematic of
particle movement with different pinned orientations ϕ�

p.
(d) Stresslet S∞yy as a function of pinned orientation ϕ�

p.
The inset shows the magnitude of the coefficients of Eq. (4),
and particle schematics show the direction of the transverse
movement. (e) Comparison of far-field theory Eq. (3) and
boundary element simulations for the lift velocity Uy of an
ellipsoidal particle with α ¼ 3 and β ¼ 100.
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β ¼ 100 for different distances of the particle from the
surface. Very good agreement is obtained for y=a≳ 4.
Deviations occur close to the wall where higher order terms
in Eq. (3) play a role. We also ignored the fact that the
stresslet Syy itself is modified due to the presence of thewall.
Next we show that the magnetic particle can be focused

to an arbitrary transverse position under Poiseuille flow
between two walls. This geometry is an approximation
for high aspect ratio rectangular channels away from
side walls. The background velocity profile is v∞x ðyÞ ¼
_γwyðH − yÞ=H, with _γw the shear rate at the wall and H the
distance between the two walls [Fig. 1(b)]. β [Eq. (1)] can
be locally defined as βðyÞ ¼ βw=ð1 − 2y=HÞ with βw ¼
mB=ðηa3 _γwÞ describing the value at the wall. Since the
rotational motion is much faster than the translational
motion, the particle angle ϕp can be assumed to be quasi-
static for a given position y. Hence the far-field approxi-
mation of the position-dependent stable angle ϕ�

pðyÞ
follows by simply solving _ϕp¼0 [Eq. (2)] at each y.

As shown in Figs. 2(a)–2(c), the angle ϕ�
p increases

with y because the local vorticity of the Poiseuille flow
ωz ¼ _γwð2y=H − 1Þ monotonically increases with y while
the magnetic contribution is constant throughout the
space. Note that at the channel center ϕ�

pðH=2Þ ¼ ϕB since
the local shear rate is zero, and, hence, the angle is only
determined by the magnetic torque. Again, the far-field
approximation to the transverse velocity Uy is obtained
by stresslet images (3), but with revised position factor
PðyÞ¼ð1−2y=HÞð1=y2−1=ðH−yÞ2Þ to take into account
the effect of two walls. The velocity Uy is shown in
Figs. 2(a)–2(c). Since PðyÞ is always positive, the sign of
the stresslet Syy alone determines the y-directional move-
ment of the particle: equivalently, the stable angle ϕ�

p

determines the direction [see Fig. 1(d)].
A stable fixed point y�, which is determined by

Uyðy�Þ¼0 and ∂Uy=∂yjy¼y� <0, is required to focus the
particle to a specific position. When the magnetic field is
applied perpendicular to the flow direction (ϕB ¼ π=2) as

(d)

(c)(b)(a)

(e)

FIG. 2. Focusing under Poiseuille flow: (a)–(c) Stable angle ϕ�
p and transverse velocityUy as a function of the particle (α ¼ 3) position

y for a magnetic field βw ¼ 60 and ϕB ¼ (a) π=2, (b) 0 and (c) −0.4π and channel width H=a ¼ 20. Lines: prediction from far-field
theory; dots in (c): results from boundary element simulations. (d) Time history of particle position yðtÞ from boundary element
simulations under the conditions of (c). The gray dotted curves show trajectories in a rectangular channel of aspect ratio Hz=Hy ¼ 4 for
different initial conditions z0 ¼ f0.5Hz; 0.8Hzg. The inset shows stable fixed point y�=H for ellipsoids (α ¼ 3) as a function of the
magnetic field βw and ϕB obtained by far-field theory. White lines are isolines for every 0.1. (e) Distribution of focused particles under
Poiseuille flow with _γw ¼ 100 s−1 and channel width H=a ¼ 20 after 10 s, from Brownian dynamics simulations with particle size
a ¼ 10 μm. Inset: theoretical predictions (lines) and Brownian dynamics simulation (dots) for the standard deviation of the distribution
σ=a. Dotted horizontal line indicates separations a≳ 2 μm.
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shown in Fig. 2(a), the particles are focused to the channel
center because the change in sign of sin2ϕ�

p>0 ðy < H=2Þ
to sin 2ϕ�

p < 0 ðy > H=2Þ gives the conditions for a stable
fixed point at y ¼ H=2 [inset of Fig. 2(a)]. This relation is
reversed when the magnetic field points in the flow
direction (ϕB ¼ 0) [Fig. 2(b)] and all particles move
towards the walls. In general, a particle position y�
satisfying ϕ�

pðy�Þ ¼ �π=2 is a stable fixed point, while
a position with ϕ�

pðy�Þ ¼ 0 or π is an unstable fixed point.
Hence, by changing the direction of the magnetic field

ϕB, it is possible to focus particles to arbitrary target
positions. The stable fixed point y� can be predicted solving
_ϕp ¼ 0 [Eq. (2)] for ϕ�

p ¼ �π=2 as

y�

H
ðα; βw;ϕBÞ ¼

1

2
� βwFðαÞ
8π½1þ JðαÞ� cosϕB; ð5Þ

where JðαÞ and FðαÞ are defined after Eq. (2). For example,
when a field is applied in direction ϕB ¼ −0.4π with
βw ¼ 60 [Fig. 2(c)], the stable fixed point of an ellipsoid
(α ¼ 3) is y�=H ≈ 0.32 and the particles are focused to this
position. This we also confirm by performing boundary
element simulations with different initial positions, shown
in Fig. 2(d), and we observe that UyðyÞ and ϕ�

pðyÞ obtained
from simulations qualitatively agree with the far-field
results. Note that the hydrodynamic contributions from
the two walls are calculated considering the images of both
walls [32] in the simulation, which is enough for relatively
large channels H=a ¼ 20, while higher order reflections
are required for a much narrower channel [40,41]. The inset
of Fig. 2(d) describes the stable fixed point y�=H [Eq. (5)]
for ellipsoids (α ¼ 3) with −π=2 < ϕB < 0. The figure
shows y� shifts toward the bottom wall with increasing βw
or ϕB, and the particles can be focused to arbitrary positions
in the lower half of the channel (y=H < 0.5). By symmetry,
the particles would be focused to the upper half of the
channel for 0 < ϕB < π=2. Although the far-field theory
predicts that the particles cannot cross the center line
because UyðH=2Þ ¼ 0, in reality they can do so because
of their finite size, as confirmed by boundary element
simulations [Fig. 2(d)].
To see the effect of side walls at z ¼ 0 and z ¼ Hz on the

motion of the particles, we extended our simulation scheme
to a rectangular channel geometry by using a triangular
mesh both for the particles and the walls [40,42–44]. When
the particles are not too close to the walls we observe very
similar trajectories, focusing points y� and focusing times
as without side walls [40] [Fig. 2(d)]. Moreover migration
in the z direction is negligible.
Finally, we show how a static magnetic field can be

used to separate particles of different aspect ratio α even in
the presence of thermal fluctuations. The particles are
initially uniformly distributed in the lower half of the
channel [13], and we consider the same magnetic field and
channel height as discussed above (βw ¼ 60, ϕB ¼ −0.4π,

H=a ¼ 20), wall-shear rate _γw ¼ 100 s−1, and viscosity of
water (η ¼ 10−3 Pa s). We use Brownian dynamics simu-
lations at room temperature, solving the equations

_r ¼ Up þH · ξ; ð6Þ

_n ¼ðΩp þ
ffiffiffiffiffiffiffiffi
2Dr

p
ξrÞ × n; ð7Þ

for different particle size a and aspect ratio α. Here
Up ¼ v∞x x̂þ Uyŷ, and Ωp ¼ Ωϕϕ̂þΩθθ̂ is the full 3D
particle reorientation rate for the particle orientation n ¼
ðsin θp cosϕp; sin θp sinϕp; cos θpÞ with Ωϕ¼ _γwfβðyÞ×
FðαÞsinðϕB−ϕpÞ=ð8π sinθpÞ−ð1−Jcos2ϕpÞ=2g, Ωθ¼
_γwfβðyÞFðαÞcosθpcosðϕB−ϕpÞ=ð8πÞþJsin2θpsin2ϕp=4g
[28]. H is calculated from the translational diffusion
tensor Dðϕp;θpÞ¼D̄1þ1

2
ΔDMðϕp;θpÞ¼ 1

2
H ·HT, where

Mðϕp; θpÞ is a symmetric 3 × 3 matrix [40] and D̄ ¼
ðD1þD2Þ=2, ΔD¼D1−D2, where D1¼kBTa−1η−1K1ðαÞ
and D2 ¼ kBTa−1η−1K2ðαÞ are the respective longitudinal
and transverse diffusion coefficients of an ellipsoid of aspect
ratio αwith shape functionsK1ðαÞ > K2ðαÞ [33,40,45–47].
The rotational diffusion constant Dr ¼ kBTa−3η−1KrðαÞ
with the shape function KrðαÞ [33,36,40]. The random
numbers ξi and ξri model Gaussian white noise with zero
mean and hξiξji ¼ hξriξrji ¼ δij (i ¼ x, y, z).
Distributions for 1000 particles of size a ¼ 10 μm for

α ¼ f2; 3; 4g after t ¼ 10 s are shown in Fig. 2(e). Our
results clearly show that particles of different shape can be
separated to different target positions y�ðαÞ, given by Eq. (5),
by applying a static magnetic field. 50% of the particles
reach the target region y�ðαÞ � a in experimentally feasible

times [7 s (α ¼ 4) to 20 s (α ¼ 2)] and traveling distances
(<30 mm). Note, the focusing times are even smaller for
higher confinement [40]. Efficient separation is only
possible for particles of size a≳ 2 μm, where the width
of the steady state distribution σ [48] is smaller than the
distance between two peaks [see inset of Fig. 2(e)]. We find
an approximate analytic expression for σ by linearizing the
drift velocity around the fixed point y�, Uy ¼ −kðy − y�Þ,
where k only depends on the system parameters [40]. We
solve for the steady state distribution pðyÞ ∼ exp½−V=kBT�,
where we introduced a potential V ¼ γ1kðy − y�Þ2=2
with γ1 ¼ kBT=D1, which keeps the particle near its
target position y�. Since k ∼ s−1 and γ1 ∼ ηa we obtain
σ=a ∼ a−3=2η−1=2ðkBTÞ1=2.
We have shown that the transverse position of magnetic

ellipsoidal particles in microchannel Poiseuille flow can
be controlled by a static magnetic field. This is due to
the hydrodynamic interactions of the ellipsoids with the
channel walls. Our method can be used to focus and
segregate magnetic particles which is of importance for
particle manipulation in lab-on-a-chip devices.
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