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Understanding how topological constraints affect the dynamics of polymers in solution is at the basis of
any polymer theory and it is particularly needed for melts of rings. These polymers fold as crumpled and
space-filling objects and, yet, they display a large number of topological constraints. To understand their role,
here we systematically probe the response of solutions of rings at various densities to “random pinning”
perturbations. We show that these perturbations trigger non-Gaussian and heterogeneous dynamics,
eventually leading to nonergodic and glassy behavior. We then derive universal scaling relations for the
values of solution density and polymer length marking the onset of vitrification in unperturbed solutions.
Finally, we directly connect the heterogeneous dynamics of the rings with their spatial organization and
mutual interpenetration. Our results suggest that deviations from the typical behavior observed in systems of
linear polymers may originate from architecture-specific (threading) topological constraints.
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Introduction.—The behavior of unknotted and mutually
unlinked ring polymers in dense solutions and melts is a yet
unsolved issue in polymer physics [1], and it has stimulated
much theoretical [2–21] and experimental [22–29] work in
the last decades. One of the most elusive aspects of this
problem is the interplay between topological constraints
(TCs) and both structure and dynamics of the rings, which
are far more intricate than in the case of linear polymers. In
the latter, TCs originating from chain uncrossability [30]
induce slow dynamics through the reptative motion of the
chain ends [30–32] without affecting the average chain size
or gyration radius Rg, which remains a random walk
[33,34] and scales with the polymerization index N as Rg ∼
Nν with ν ¼ 1=2. In the former, rings have no ends to
“reptate” [1] and global topological invariance requires that
all rings remain permanently unlinked at the expense of
some entropic loss [35]. Thus, TCs affect both dynamics
and conformation of rings whose size is characterized by a
nontrivial exponent predicted to be in the range ν ¼ 1=4 [2]
and ν ¼ 2=5 [35].
In recent years, accurate computational work [6,7,12]

reported evidence that in the limit of large N, ν → 1=3,
according to a picture in which rings fold into crumpled
conformations [36] whose compaction increases with sol-
ution density [37]. In spite of this, the surface of each ring,
i.e., the fraction of contour length in contact with other
chains, is “rough” and scaling asNβwith β ≲ 1 [7,13,37,38].
In fact, crumpled rings do not fully segregate or expel
neighboring chains from the occupied space [7], rather, they
fold into interpenetrating or “threading” conformations
[15,39] that are akin to interacting “lattice animals” [12]
with long-range (loose) loops [21,40].
Threadings are architecture-specific TCs that uniquely

populate systems of polymers whose contours display
(quenched) closed loops [15,16,19,39,41] [see Fig. 1(a)].

These peculiar interactions have been shown to be instru-
mental for triggering “topological freezing” in solutions of
rings [20]. This putative glassy state—which cannot be
observed in melts of linear polymers [20]—is achieved by
randomly pinning a fraction of rings, fp, above an
empirical “critical” value:

f†pðNÞ ¼ −fN log

�
N
Ng

�
; ð1Þ

where Ng is the theoretical length required for spontan-
eous (i.e., fp → 0) vitrification and fN a nonuniversal
parameter [42].

(a) (b)

(c) (d)

FIG. 1. Random pinning triggers slowing down and glassiness.
(a) Typical melt structure for rings of N ¼ 250 monomers with
fp ¼ 0 and ρ ¼ 0.2σ−3. Inset: two rings isolated from the melt
and showing mutual threading. (b)–(d) Mean-square displace-
ment of rings c.m., hg3ðΔÞi [Eq. (3)] as a function of lag time Δ
(see also SM [43]). Rings display glassy behavior (hg3ðΔÞi ∼ Δ0)
for fp > f†p where f†p decreases with both N and ρ. Dashed
horizontal lines mark the mean-square ring diameters, 4hR2

gi.
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Topological freezing is the consequence of the prolifer-
ation of interring constraints which depend on polymeri-
zation index N [15,18,19,41] or solution density ρ. While
it has been shown that longer rings generate more TCs
[18–20,41], it remains unclear how they behave if solutions
become denser, rings more crumpled [37] and less space is
available to threading.
Motivated by these considerations, in this Letter we study

the dynamical effect of these known (threading) TCs by
randomly pinning solutions of semiflexible ring polymers at
different solution densities ρ. We show that the threshold
pinning fraction f†pðρÞ obeys an empirical relation akin to
Eq. (1) andwe derive universal scaling relations for the values
of Ng and ρg at which spontaneous (f†p → 0) glassiness is
expected.We further discuss the dynamics of rings in terms of
ensemble- and time-average observables and report, for the
first time, numerical evidence for ergodicity breaking effects
and pronounced heterogeneous non-Gaussian dynamics,
even in unperturbed (fp ¼ 0) solutions.
Results.—We perform large-scale molecular dynamics

simulations of dense solutions of unlinked, semiflexible
ring polymers with FENE bonds, a well-established coarse-
grain framework for polymer solutions [48,49]. We con-
sider rings N ¼ 250 and N ¼ 500 beads long and explore
monomer densities ρσ3 ¼ 0.1, 0.2, 0.3, 0.4. For each
combination of N and ρ, we run a single independent
realization of the system in which a random fraction fp of
rings has been “pinned,” i.e., permanently frozen in space
and time, a strategy akin to that employed to study glass
transition in colloids [50–52] (see Supplemental Material
(SM) for details [43]).
The dynamics of a single nonfrozen ring can then be

captured by the mean-square displacement of its center of
mass (c.m.), g3ðT;ΔÞ, as a function of the lag time Δ and
measurement time T:

g3ðT;ΔÞ≡ 1

T − Δ

Z
T−Δ

0

½rCMðtþ ΔÞ − rCMðtÞ�2dt: ð2Þ

The time-average displacement can be defined as g3ðΔÞ≡
g3ðT;ΔÞ while its ensemble average is defined as

hg3ðT;ΔÞi≡ 1

Mf

X0
g3ðT;ΔÞ; ð3Þ

with
P0

indicating that the average is performed over the
set of Mf “free,” i.e., not explicitly pinned, rings.
Accordingly, we indicate the time- and ensemble-average
displacement as hg3ðΔÞi.
Figures 1(b)–(d) and SM [43] Fig. S1 compare the

behavior of hg3ðΔÞi in response to the random pinning of
different fractions fp of rings: unperturbed solutions
(fp ¼ 0) display a crossover from subdiffusive (hg3ðΔÞi∼
Δ3=4) to diffusive (hg3ðΔÞi ∼ Δ) behavior [8,13,24],
whereas perturbed systems (fp > 0) display reduced

diffusion, the more severe the higher the value of fp.

For fp larger than f†pðρ; NÞ, the average displacement
remains well below one ring diameter (marked by the
horizontal dashed lines) and does not diverge in time,
indicating a solidlike (glassy) behavior [20]. Importantly,
we observe that f†pðρ; NÞ decreases with both ring length N
and, unexpectedly, monomer density ρ.
In order to obtain the functional formoff†pðρ; NÞ, the asym-

ptotic diffusion coefficient Dðρ; fpÞ≡ limΔ→∞hg3ðΔÞi=
6Δ at given (N, ρ, fp) is computed by best fit of the long-
time behavior of the corresponding hg3ðΔÞi to a linear
function (see SM [43]). Figure 2(a) (also SM [43] Fig. S2)
showsDðρ; fpÞ=D0ðρÞ—whereD0ðρÞ≡Dðρ; fp ¼ 0Þ—as
a function of fp. Corresponding data sets are well fitted by
exponential functions exp ð−kfpÞ and we thus extract

f†pðρ; NÞ by finding their intersection with the conventional
small value of 0.01 [20]. Theobtained “critical” linesf†pðρ; NÞ
[see SM [43] Fig. S2(c)] separate regions of the parameter
space ðρ; fpÞ with finite (liquid) and vanishing (glassy)
diffusion coefficients.
One of the main results of this work is that we find an

empirical functional form f†pðρÞ akin to Eq. (1) [53], i.e.,

f†pðρ; NÞ ¼ −fρ log
�
ρ

ρg

�
: ð4Þ

Thus, our data for N ¼ 250 and N ¼ 500 can be collapsed
onto a master curve f†pðx ¼ ρ=ρgðNÞÞ=fρ ¼ − logðxÞ with
fρ ¼ 0.44� 0.05 [Fig. 2(b)]. Given that both Eqs. (1) and
(4) describe the same quantity, we argue that their right-
hand side must also be equal. By combining them [54]
under the assumption that the only dependence on ρ is
contained in Ng, the values of ρg and Ng for spontaneous
topological vitrification must obey the following universal
scaling relations:

(a) (b)

FIG. 2. Exponential slowing down and universal phase dia-
gram. (a) Dðρ; fpÞ=D0ðρÞ is compatible with exponential decay
(dashed line) in fp. An arbitrarily small (0.01) value is chosen to
determine the transition to glassy behavior [20]. (b) Universal
master curve [¼ − logðxÞ, dashed line] for f†pðρ; NÞ=fρ as a
function of ρ=ρgðNÞ [see Eq. (4)] vs data (symbols) for N ¼ 250

and N¼500 with fρðN¼250Þ¼0.435�0.015, fρðN ¼ 500Þ ¼
0.445� 0.05, σ3ρgðN¼250Þ¼0.84�0.05, and σ3ρgðN¼500Þ¼
0.56�0.05.
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ρgðNÞ ∼ N−η; NgðρÞ ∼ ρ−1=η; ð5Þ

with η ¼ fN=fρ ¼ 0.68� 0.1 (using fN ¼ 0.30� 0.05
from Ref. [20]). This value can be compared with the
one obtained by fitting the empirical ρgðNÞ, found to decay
as N−0.6 [see Fig. 2(b)]. Using the value of Ngð0.1Þ≃ 3500

from Ref. [20], we can estimate the ranges Ngð0.3Þ≃
520–850 and Ngð0.4Þ≃ 320–600; these partially overlap
with the parameters considered in this work and suggest
that our densest and longest systems may fall close to the
onset of spontaneous glassiness (see below). Importantly,
Eqs. (4) and (5) provide a quantitative scaling prediction
that may be tested and numerically refined through com-
puter simulations and future experiments on randomly
pinned melts of rings.
Having determined the functional form of f†p and

the generic scaling of Ng and ρg, we now turn our attention
to the role of TCs in the dynamics of single rings. We
consider the distribution of 1d displacements Δx,
PðΔxÞ ¼ hδðΔx − jxðtþ ΔÞ − xðtÞjÞi, which corresponds
to the self-part of the van Hove function [55,56] at given
lag time Δ. For definitiveness, we focus on the physi-
cally relevant crossover lag time Δ ¼ Δc, defined as
hg3ðΔcÞifp¼0 ≡ 4hR2

gi (see dashed lines in Fig. 1).
For freely diffusing particles, the distributions of rescaled

displacements X ≡ Δx=
ffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2i

p
are expected to be

described by the universal Gaussian function with zero
mean and unit variance [55]. Here, instead, two additional
features emerge: First, a prominence of rings with short
“cagelike” displacements, identified by the region centered
around X ¼ 0 where PðXÞ remains above the Gaussian.
Second, the appearance of a subpopulation of rings traveling
farther than the average ring, giving rise to “fat” exponential
tails. Intriguingly, both are akin to features observed in
generic systems of particles close to glass and jamming
transitions [56]: accordingly, here they appear either in
perturbed solutions of short rings [Figs. 3(b) and 3(c)] or in
unperturbed systems close to the critical length NgðρÞ [see
Eq. (5), Fig. 3(d), and SM [43] Fig. S3].
Thus, we claim that the non-Gaussian behavior reported

here is manifestly triggered by pinning perturbations,
arguably via threading TCs (see below). Further, we
conjecture that threading configurations may also account
for the spontaneous caging observed in unperturbed sol-
utions at large ρ’s and N ¼ 500 [Fig. 3(d)]. We then argue
that threadings may in general be responsible for the
cagelike, non-Gaussian motion of synthetic ring polymers
seen in experiments [24]. Transient threadings between
rings may act as temporary cages [40], which are more
long-lived the denser the solutions and the longer the rings
[18–20].
In order to better understand deviations from Gaussian

behavior, we now investigate time-average quantities of
single ring trajectories. In Figs. 4(a) and 4(b) and SM [43]

Fig. S4 we report g3ðT;ΔcÞ=hg3ðΔcÞifp¼0, i.e., the c.m.
displacement of single rings at fixed lag time Δ ¼ Δc and
increasing measurement time T, normalized with respect to
the mean value in the unpinned case. We show that in
unperturbed solutions of short polymers, any ring travels at
similar speed [Fig. 4(a), fp ¼ 0] whereas, after pinning, the
systems display spatial and temporal heterogeneity in the

(a) (b)

(c) (d)

FIG. 3. Distributions of displacements are non-Gaussian. Dis-
tribution functions, PðXÞ, of 1d scaled displacements of the c.m.
of nonpinned rings, X ≡ Δx=

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2i

p
, at the crossover lag time

Δc, (hg3ðΔcÞifp¼0 ≡ 4hR2
gi). (a) Unperturbed solutions of short

rings follow a Gaussian function with zero mean and unit
variance (dashed lines). (b),(c) Perturbed solutions display caging
and fat, exponential tails (solid lines). (d) Deviations from
Gaussian behavior are also observed in unperturbed solutions
with N ¼ 500 and ρσ3 ≥ 0.3 since N ≃ NgðρÞ. Deviations
become more marked as Δ increases (SM [43] Fig. S3).

(a) (b)

(c) (d)

FIG. 4. Heterogeneity and ergodicity breaking. (a),(b) Repre-
sentative curves for g3ðT;ΔcÞ=hg3ðΔcÞifp¼0 at fixed lag time
Δ ¼ Δc as a function of measurement time T displaying spatial
and temporal (gray trace) heterogeneity. (c),(d) Corresponding
ergodicity-breaking (EB) parameters [Eq. (6)]. EB ∼ T−1 marks
standard diffusive processes, whereas ∼T0 is a signature of ergo-
dicity breaking. The system with N ¼ 500 at the highest density
ρσ3 ¼ 0.4 shows weaker convergence ∼T−0.5 even at fp ¼ 0.
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trajectories which cluster into distinct fast- and slow-
moving (caged) components (Fig. 4 and SM [43]
Figs. S5-S6; see also cluster analysis in SM [43]). Taken
together, these observations agree with the concept of
permanent and transient caging due to threading TCs.
Constraints with diverging lifetimes have been shown

to trigger nonergodic behavior [57]. We quantify these
deviations form ergodic diffusion through the ergodicity-
breaking parameter [44]

EBðTÞ≡ ½hg3ðT;ΔcÞ2i − hg3ðT;ΔcÞi2�
hg3ðT;ΔcÞi2

; ð6Þ

which captures how fast the single-ring trajectories
g3ðT;ΔcÞ narrow around the mean hg3ðΔcÞi. For standard
diffusive solutions, EBðTÞ decays as T−1 [44,45] whereas
in nonergodic systems EB ∼ T0 [58]. As shown in Fig. 4(c)
(see also SM [43] Fig. S7) ergodicity breaking can indeed
be triggered by random pinning. Remarkably, and in
agreement with the predictions of Eq. (5), we observe
weaker convergence to ergodicity in unperturbed solutions
only for N ¼ 500 and ρ ¼ 0.4σ−3 [Fig. 4(d)], thereby
suggesting nonstandard statistics in the waiting times of
diffusing rings [45,58].
Having investigated the heterogeneous dynamics of

single rings, we now aim to connect the observed non-
Gaussian dynamics to the spatial organization of the chains.
First, one may argue [11,35] that a ring of size Rg

experiences an entropic penalty proportional to the average
number of overlapping neighbors hmovi

S
kBT

∼ hmovi ∼
ρ

N
R3
g ∼ ρα; ð7Þ

where we assume that [6,7,12], in the large-N limit, the
number of chains in a volume R3

g converges to a (density
dependent) constant characterized by an exponent α < 1

[37], i.e., R3
g=N ∼ ρ−ð1−αÞ. In Eq. (7), hmovi is defined as the

average number of chains whose c.m. is within 1.4hRgi [18]
from any other ring.We find that limN→∞hmovi is weak onN
and α≃ 0.60–0.74 [Fig. 5(a)]. Importantly, Eq. (7) implies
that higher monomer densities lead to a larger number of
overlapping neighbors [37] and, in turn, larger entropic
penalties [35], thereby driving more compact conforma-
tions. Counterintuitively, results from Figs. 1 and 2 suggest
that denser systems are more susceptible to random pinning,
and display glassy behavior at lower values of fp.
This apparent contradiction can be reconciled by resort-

ing to the following picture. We consider rings as nodes of
an abstract network, where a link between two nodes
indicates that the corresponding rings overlap for a total
time longer than half of the overall simulation run time.
Two examples of networks are given in Fig. 5(b) and SM
[43] Fig. S8, where nodes have been colored according to
their diffusion coefficients. These show that slow or caged
rings are connected (overlap persistently) either with other

slow or caged rings or with pinned ones, whereas fast rings
have virtually zero degree. The network thus directly
connects the static conformations to the dynamic properties
of the rings, by showing that overlapping rings reciprocally
slow down owing to their mutual TCs.
To obtain a quantitative estimation of how TCs affect the

dynamics of rings, we approximate the network as a Bethe
lattice [32] of coordination hmovi. The maximum number
of shells is

ḡ ¼
log ðhmovi−2

hmovi ðM − 1Þ þ 1Þ
logðhmovi − 1Þ ; ð8Þ

withM the total number of nodes. We now assume that the
effect of pinning a single ring results in a “caging cascade,”
i.e., caging of its first neighbors with an unknown prob-
ability pc, of its second neighbors with probability p2

c, and
so on, generating a fraction of trapped rings equal to f0c.
Assuming that for small fp all pinned rings act independ-
ently on their neighbors, we obtain the total fraction of
caged rings fc as

fc ¼ fpf0c ¼ fppchmovi
ðpcðhmovi − 1ÞÞḡ − 1

pcðhmovi − 1Þ − 1
: ð9Þ

Interestingly, Eq. (9) links a measurable quantity (frac-
tion of caged rings fc) to an imposed quantity (fraction of
pinned rings fp) and, by inversion, allows us to determine
the caging (or threading) probability between close-by
rings pc. In particular, Eq. (9) implies that the system
becomes “critical” when pc ¼ p†

c ≡ 1=ðhmovi − 1Þ, for
there exists a finite fraction fc of caged rings even in the
limit fp → 0.

(a) (b)

FIG. 5. Slowing down of persistently overlapping rings.
(a) Average number of overlapping chains per ring, hmovðρÞi.
Dashed lines correspond to the fitted power-law behaviors (see
Table SII in SM [43]). (b) Abstract network representation: nodes
(representing rings) are color coded and arranged clockwise
according to their relative diffusion coefficients, D=Dmax. Edges
are drawn only if the nodes have been overlapping for more than
50% of the total run time. Notice that while all rings display the
samemov at any time, slow-moving and caged nodes display larger
degrees indicating more persistent overlaps. In contrast, fast rings
show little or no long-time overlaps (see also SM [43] Fig. S8).
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Combining Eqs. (8) and (9) and evaluating fc at
fp ¼ 0.3, we can numerically extract values for pc at
any given ρ (see Table SII). Interestingly, pc increases with
ρ up to where pc is approximately given by the predicted p†

c

and, curiously, we find that pc > p†
c only in the two cases

showing spontaneous deviations from Gaussian behavior
(N ¼ 500 and ρσ3 ≥ 0.3).
Conclusions.—We have shown that dense solutions of

semiflexible ring polymers display rich, non-Gaussian
behavior under random pinning perturbations. Glassiness
is observed at pinned fractions fp larger than a critical
value f†pðρ; NÞ, which obeys an empirical dependence on ρ
similar to the one previously reported for N [Eqs. (1)–(4)
and Fig. 2]. As a consequence, we obtained novel and
generic scaling relations for the critical ρgðNÞ and NgðρÞ
marking the onset of spontaneous topological vitrifica-
tion [Eq. (5)].
We have reported the first evidence of (i) ergodicity

breaking in perturbed solutions of rings and (ii) nontrivial
convergence towards ergodicity together with spontaneous
caging (Figs. 3 and 4) in unperturbed systems at
N ≃ NgðρÞ. Further, we reported that upon random pin-
ning, rings appear to cluster into components with slow or
fast diffusivities corresponding to more or less persistent
overlaps with other slow or pinned rings (Fig. 5). These
results can be rationalized by arguing that threadings may
act as transient cages which are then quenched by the
random pinning protocol.
An intriguing finding of our work is that, even in the

limit fp → 0, solutions of rings may deviate from standard
Gaussian behavior [Figs. 3(d) and 4(d)] and display
features at the onset of “topological glassiness” provided
ρ≃ ρgðNÞ or N ≃ NgðρÞ [see Eq. (5) and Fig. 2]. We
suggest that a topological glass may form when the
probability pc of any pinned ring to cage any of its
neighbors is ≥ p†

c, with p†
c given by a simple analytical

expression for networks in the Bethe lattice approximation.
We argue that the experimentally observed [24] non-

Gaussian, cagelike behavior of ring polymers melts may be
well reconciled within our picture. At the same time,
we hope that the present work will pave the way for
future experiments and investigations on randomly pinned
polymer melts.
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