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We consider a model of Dirac fermions in 2þ 1 dimensions with dynamically generated, anticommuting
SO(3) Néel and Z2 Kekulé mass terms that permits sign-free quantum Monte Carlo simulations. The phase
diagram is obtained from finite-size scaling and includes a direct and continuous transition between the Néel
andKekulé phases. The fermions remain gapped across the transition, and our data support an emergent SO(4)
symmetry unifying the two order parameters.While the bare symmetries of ourmodel do not allow for spinon-
carrying Z3 vortices in the Kekulé mass, the emergent SO(4) invariance permits an interpretation of the
transition in terms of deconfined quantum criticality. The phase diagram also features a tricritical point at
which theNéel, Kekulé, and semimetallic phasesmeet. The present sign-free approach can be generalized to a
variety of other mass terms and thereby provides a new framework to study exotic critical phenomena.
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While some of the seminal theoretical works on
symmetry-brokenphases of two-dimensionalDirac fermions
date back to the 1980s [1,2], research along these lines was
boosted by the experimental realization of graphene [3]. Of
particular interest from the perspective of strongly correlated
fermions are interaction-driven phase transitions between the
semimetal and various ordered phases [4,5]. The latter
include not only the usual antiferromagnet (AFM) [6] and
charge-density-wave insulators [1] but also the more com-
plex Kekulé valence-bond solids (KVBSs) [7], as well as
quantum Hall and quantum spin Hall states [2,8,9].
Remarkably, the Dirac nature of the charge carriers changes
the nature of the phase transitions, so that the critical points
are described by Gross-Neveu field theories [10] rather than
Ginzburg-Landau-Wilson theory [11–18]. Exact quantum
Monte Carlo (QMC) simulations have played a key role for
our understanding of these phenomena.
The interplay of different order parameters is a funda-

mental aspect of many-body physics. Whereas phases with
different broken symmetries are, in general, connected by
intermediate phases or first-order transitions according to
Ginzburg-Landau theory, a third possibility exists for
quantum phase transitions, namely, deconfined quantum
critical points (DQCPs). Such DQCPs can be described in
terms of emergent spinon degrees of freedom that are
confined on either side of the transition but deconfined at
criticality [19,20]. The canonical example is the AFM-VBS
critical point of spin-1

2
quantum magnets on the square

lattice [19,20], which has been studied numerically using
quantum spin or classical loop models [21–23]. Competing
orders in Dirac systems have been numerically investigated
for spinless (N ¼ 1) fermions on the honeycomb lattice
[24]. While the topological Mott phase predicted by mean-
field theory [9,25,26] is destroyed by fluctuations [27], an
intricate interplay of different charge- and bond-ordered

phases is observed [27–31]. For N ¼ 2, the semimetal-
AFM transition [6,16–18,32,33] and the semimetal-KVBS
transition [34] were investigated by QMC simulations (for
the case where N > 2, see Refs. [35,36]). However, no
QMC results exist for competing order parameters because
a sign problem arises in simulations of minimal extended
Hubbard models.
In this Letter, we apply exact QMC simulations to a

model of N ¼ 2 Dirac fermions in 2þ 1 dimensions that
captures the interplay of the chiral SO(3) Néel mass term
and an Ising-type Kekulé mass term. We present the phase
diagram and evidence for a direct, second-order quantum
phase transition between the two ordered states with an
emergent SO(4) symmetry at criticality related to the
anticommuting nature of the mass terms.
Model.—To study the competition between the Néel and

Kekulé mass terms, we simulated a honeycomb lattice
model with Hamiltonian Ĥ ¼ Ĥf þ Ĥs þ Ĥfs. Here,

Ĥf ¼ −t
X
hiji;σ

ĉ†iσ ĉjσ þ U
X
i

�
n̂i↑ −

1

2

��
n̂i↓ −

1

2

�
ð1Þ

corresponds to the Hubbard model, whereas

Ĥs ¼ J
X
hij;kli

ŝzijŝ
z
kl − h

X
hiji

ŝxij ð2Þ

is a ferromagnetic, transverse-field Ising model defined on
the bonds hiji of the honeycomb lattice. The fermion-spin
coupling (ξij ¼ 0, �ξ; see Fig. 1) is given by

Ĥfs ¼
X
hiji;σ

ξijŝ
z
ijĉ

†
iσ ĉjσ. ð3Þ

It defines a new unit cell with lattice vectors A⃗1 and A⃗2 and
allows for scattering between the Dirac cones and, thereby,
the Kekulé order. The full model has an SU(2) spin
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symmetry, as well as a Z2 symmetry corresponding to the
invariance under the combined operation of inversion and
ŝzij → −ŝzij. Since Ĥfs → −Ĥfs under inversion (or reflec-
tion across the y axis), the energy does not depend on the
sign of ξ and the two possible Kekulé patterns related by
ξ → −ξ are degenerate.
The Hubbard interaction and the spin-fermion coupling

(3) have the potential to generate the Néel and the Kekulé
order, respectively. Within the framework of Ginzburg-
Landau theory, and in the notation of Ref. [12], a minimal
low-energy theory of Dirac fermions with Néel and Kekulé
mass terms is given by the Lagrangian

L ¼
X
σσ0

Ψ̄σ

�
∂uγuδσσ0 þ

�
mAFM

mKVBS

�
·

� σσσ0
iγ5δσσ0

��
Ψσ0 ; ð4Þ

plus a purely bosonic part Lb that captures fluctuations of
the individual masses as well as the coupling between them.
Note that the second possible Kekulé mass term on the
honeycomb lattice, iγ0γ3 [7], is forbidden in our construc-
tion since it is even under inversion.
Our Hamiltonian Ĥ captures the physics of competing,

dynamically generated order parameters described by
Eq. (4). The introduction of Ising spins is simply a means
of defining a model with the desired low-energy theory,
while at the same time avoiding the minus-sign problem
and hence opening the way to large-scale QMC simula-
tions; the absence of a sign problem is due to particle-hole
symmetry [37]. This designer Hamiltonian approach is
extremely flexible. For instance, similar sign-free models
have recently been introduced to study, e.g., nematic [38]
and ferromagnetic transitions in metals [39], topological
Mott insulators [40], and Z2 lattice gauge theories coupled
to matter [41,42].

Method.—We used the ALF (Algorithms for Lattice
Fermions) implementation [43] of the well-established
finite-temperature auxiliary-field QMC method [44,45]. A
temperature T ¼ 0.05 (with Trotter discretizationΔτ ¼ 0.1)
was sufficient to obtain results representative of the ground
state. We simulated half-filled lattices with L × L unit cells
(V ¼ 6L2 sites) and periodic boundary conditions.
Henceforth, we use t ¼ 1 as the energy unit, set J ¼ −1
and ξ ¼ 0.5.
Phase diagram.—The phase diagram shown in Fig. 2

was obtained from a finite-size scaling analysis. We
measured equal-time correlation functions of fermion spin
operators Ŝi ¼

P
σσ0 ĉ

†
iσσσσ0 ĉiσ0 , fermion bond operators

B̂ij ¼ −t
P

σðĉ†iσ ĉjσ þ ĉ†jσ ĉiσÞ, and Ising spin operators
ŝzij. Because of the larger unit cell, these correlators are
matrices of the form CO

iγ;jδ with site indices i, j and bond
indices γ, δ. After diagonalizing the corresponding struc-
ture factors CO

γδðqÞ ¼ 1
V

P
ijC

O
iγ;jδe

iq·ðRi−RjÞ, we calculated
the correlation ratios (O ¼ S; B; s) [46,47]

RO ¼ 1 −
λ1ðq0 þ δqÞ

λ1ðq0Þ
ð5Þ

using the largest eigenvalue λ1ðqÞ; q0 is the ordering wave
vector, q0 þ δq a neighboring wave vector. By definition,
RO → 1 for L → ∞ in the corresponding ordered phase,
and RO → 0 in the disordered phase. At the critical point,
RO is scale invariant for sufficiently large L and results for
different system sizes cross [46,47].
Figure 3 shows results atU ¼ 6. The onset of long-range

Néel order is detected from the crossing of RAFM ≡ RS
[Fig. 3(a)]. The onset of Kekulé order can be detected either
from RKVBS ≡ Rs [shown in Fig. 3(b)] or from RB. The
crossings yield a consistent estimate of the critical point of
1=hc ≈ 0.29. The same analysis was carried out for other
parameters to construct the phase diagram. The phase

FIG. 1. The model of fermions on the honeycomb lattice with
hopping t and Hubbard repulsion U, coupled to Ising spins on the
lattice bonds (the solid circles) with exchange J and transverse
field h. The couplings ξij ¼ 0,�ξ have a Kekulé modulation. The
unit cell (shaded blue) contains six fermionic sites and nine Ising
spins. The lattice vectors are A⃗1 and A⃗2.
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FIG. 2. Phase diagram with semimetallic, antiferromagnetic
(AFM), and Kekulé-ordered (KVBS) phases from QMC simu-
lations at T ¼ 0.05. Circles (diamonds) indicate the onset of long-
range Néel (Kekulé) order; open (solid) symbols are critical
values based on L ¼ 3 and 6 (L ¼ 6 and 9); see the text.
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boundaries in Fig. 2 are based on the crossing points of
results for L ¼ 3, 6 (the open symbols) and L ¼ 6, 9 (the
solid symbols), respectively.
Because the semimetal is stable with respect to weak

perturbations [11], phase transitions occur at nonzero
couplings. Accordingly, the phase diagram in Fig. 2 shows
an extended semimetallic phase as well as ordered AFM
and KVBS phases. Whereas the semimetal preserves the
relevant SOð3Þ × Z2 symmetry of our model, the AFM
breaks the SO(3) spin symmetry and the KVBS with long-
range Kekulé order (and ferromagnetic order of the Ising
spins) breaks the Z2 symmetry. The most interesting aspect
of Fig. 2 is the direct transition between the AFM and the
KVBS, with a potential tricritical point at ðU; 1=hÞ≈
ð4.2; 0.28Þ. The slight mismatch of critical values near
this point is within the finite-size uncertainties and does not
imply an intermediate phase. Further evidence for a direct
transition will be presented below. The semimetal-AFM
and semimetal-KVBS transitions are expected to be in the
previously studied Gross-Neveu-Heisenberg [14,17,18]
and Gross-Neveu-Ising [40] universality classes, respec-
tively. Their critical values are only slightly changed by
the fermion-spin coupling. The AFM-KVBS transition at
U ¼ 6 will be the focus of the remainder of this Letter.
AFM-KVBS transition.—The results of Fig. 3 suggest a

single critical point, with the scaling behavior pointing to a
continuous transition. Additional evidence can be obtained
fromthefree-energyderivative∂F=∂h¼hPhijisxiji inFig.4(a),
which reveals no signs of discontinuous behavior for the system
sizes accessible. Similar results were found at lower temper-
atures. We also analyzed the single-particle gap across the
transition and found it to remain clearly nonzero [Fig. 4(b)].

The fact that the two mass terms considered anticom-
mute has important consequences. They can be combined
[cf. Eq. (4)] into a four-component order parameter m ¼
ðmAFM; mKVBSÞ in terms of which the Hartree-Fock gap at
the Dirac points is Δsp ¼ jmj. In the AFM, the vectorm lies
in the R3 subspace spanned by its first three components,
whereas in the KVBS it is pinned along the fourth direction.
Our observation of a continuous transition at which jmj
(and hence Δsp) does not vanish implies that m becomes
unpinned at the transition and averages to zero. Within this
picture, the four components of the vector m are related by
a chiral rotation at criticality and the system should exhibit
an emergent SO(4) symmetry. While, in principle, the
second iγ0γ3 Kekulé mass could be generated dynamically,
we verified that the transition involves only the iγ0γ5 mass.
We therefore expect an SO(4) rather than an SO(5)
symmetry.
The full low-energy theory includes the SO(4) symmet-

ric terms of Eq. (4) as well as contributions that break this
symmetry. To verify whether the critical point has an
emergent SO(4) symmetry, we follow Ref. [23] and
consider the standard deviations σO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hO2i − hOi2

p
of

the AFM (σAFM ≡ σS) and KVBS (σKVBS ≡ σsÞ order
parameters. While these quantities are, in general, inde-
pendent, they become locked together if an SO(4) sym-
metry emerges. Therefore, the ratio σKVBS=σAFM should
become universal at the critical point 1=hc ≈ 0.29, which is
exactly what we see in Fig. 5. The emergent symmetry can
also be observed in the joint probability distribution of the
two order parameters. Given SO(4) symmetry, the latter
depends only on jmAFMj2 þm2

KVBS ¼ jmj2. Accordingly, a
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FIG. 3. Correlation ratios for (a) antiferromagnetic order and
(b) Kekulé order across the AFM-KVBS transition at U ¼ 6. The
crossings yield a critical value of 1=hc ≈ 0.29.
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FIG. 4. (a) Free-energy derivative ∂F=∂h and (b) single-par-
ticle gap Δsp at the Dirac point. Here, U ¼ 6.
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histogram determined from QMC snapshots should (after
normalization) produce a circular distribution [21,23]. This
is confirmed by the inset in Fig. 5. These results also
provide further evidence for the continuous nature of the
AFM-KVBS transition.
Discussion.—We have shown numerically that Dirac

fermions with competing Néel and Kekulé order para-
meters can exhibit a Landau-forbidden, direct, and con-
tinuous transition with emergent SO(4) symmetry. The key
ingredient underlying this behavior is the anticommutativ-
ity of the two mass terms.
We first discuss the relation of our findings to DQCPs

[20] described by noncompact-CP1 (NCCP1) field theory
for spinons deconfined at criticality. For the KVBS on the
honeycomb lattice, the spinons can be identified with
isolated spin-1

2
degrees of freedom at the center of Z3

vortices in the Kekulé order parameter [48]. This intuitive
picture was first proposed by Levin and Senthil [49] for the
C4 symmetric case. Interestingly, there is numerical evi-
dence that models without low-energy spinons carried by
Z3 vortices exhibit strongly first-order AFM-KVBS tran-
sitions [50,51]. Our choice of model allows only one of the
two Kekulé mass terms, thereby excluding the possibility
of spinon-carrying Z3 vortices and suggesting a first-order
AFM-KVBS transition.
The emergent SO(4) symmetry allows us to understand

the observed, continuous AFM-KVBS transition in terms
of a DQCP. Because the single-particle gap remains open
across the transition, the fermions can be integrated out to
obtain a purely bosonic theory with topological terms
[52,53]. In the present case, this yields a four-component
nonlinear sigma model with a θ term at θ ¼ π that describes
the winding of the normalized 4D mass vector m on the 3D
space-time sphere. This bosonic theory has been argued to
be equivalent to the NCCP1 field theory [54]. Very recent
numerical simulations [55] aimed at confirming duality

relations [56] reveal that the quantum phase transition
between an XY AFM and a VBS is continuous and has an
emergent SO(4) symmetry. This result was obtained using
the easy-axis J −Q model which has a bare Uð1Þ × C4

symmetry [55] compared to the SOð3Þ × Z2 symmetry of
our model. Because both models are described by the same
effective field theory at criticality, the AFM-(K)VBS
transitions should be in the same universality class, in
accordance with a preliminary finite-size scaling analysis.
The emergent symmetry observed in numerical results for
the AFM-VBS DQCP in models that support spinons may
be regarded as an interesting but secondary feature that
does not enter in the field-theory description. By contrast,
our findings suggest that it plays a central role in realizing a
DQCP in models whose bare symmetries do not support
spinon excitations.
Outlook.—We used a fermionic QMC method that scales

with the cube of the volume and hence is limited regarding
the accessible system sizes. Because the AFM-KVBS
transition is described by a bosonic theory, it seems
possible to instead start with Dirac fermions with anti-
commuting mass terms and derive spin models that do not
support spinon-carrying Z3 vortices. Such models can be
simulated on large lattices without a sign problem in the
stochastic series expansion representation [57] to verify our
conclusions. Another fruitful direction for future work
would be to seek a detailed understanding of critical
behavior at and away from the tricritical point [58].
Finally, the model considered here is only one of many
possible sign-free Hamiltonians that can be simulated to
investigate Dirac fermions with multiple mass terms.
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