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Using a variational Monte Carlo method, we study the competition of strong electron-electron and
electron-phonon interactions in the ground state of the Holstein-Hubbard model on a square lattice. At half
filling, an extended intermediate metallic or weakly superconducting (SC) phase emerges, sandwiched
between antiferromagnetic and charge order (CO) insulating phases. By carrier doping into the CO
insulator, the SC order dramatically increases for strong electron-phonon couplings, but is largely
hampered by wide phase separation (PS) regions. Superconductivity is optimized at the border to the PS.
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Introduction.—The electron-phonon interaction in con-
densed matter is the origin of many important phenomena,
such as conventional superconductivity (SC) and charge
density waves. In a class of strongly correlated materials,
the interplay between electron correlations and electron-
phonon interactions is believed to induce novel phenom-
ena such as the unconventional high-Tc s-wave SC in
alkali-doped fullerenes [1–3]. Even for high-Tc cuprates,
some experiments [4] and theoretical studies [5–7] have
suggested the important role of phonons for a full under-
standing of the electronic properties, including the SC.
However, they are still controversial because the relevance
of the electron-phonon interaction addressed in previous
theoretical works largely relies on adjustable model
parameters introduced in an ad hoc fashion. In addition,
a computationally accurate framework to study the
interplay between the electron correlation and the elec-
tron-phonon interaction has not been fully explored.
To establish the role of phonons in a wide range of
strongly correlated materials including cuprates, we need
a flexible method which can accurately treat strong
electron-electron and electron-phonon interactions on
an equal footing.
For decades, variational Monte Carlo (VMC) methods

have been applied to investigate strongly correlated elec-
trons [8–10]. The advantage of these methods is that they
do not suffer from the notorious negative-sign problem,
whereas their accuracy depends on the assumed variational
wave function. However, owing to improved efficient
optimization methods, such as the stochastic reconfigura-
tion method [11], their accuracy and flexibility have
improved through the introduction of many variational
parameters [12–19]. These methods have been recently
applied to complicated ab initio multiorbital effective
Hamiltonians [20–22]. Recently, we have successfully
extended the many-variable VMC (mVMC) method to
electron-phonon coupled systems [23].

The Holstein-Hubbard model is the simplest model for
studying the interplay of electron-electron and electron-
phonon interactions. However, the phase diagram and
physical properties under these two competing interactions
are controversial even for ground states. In one dimension
and in the Bethe lattice with infinite coordination, the phase
diagrams for the Holstein-Hubbard model have been
obtained by the density matrix renormalization group
(DMRG) [24–26] and dynamical mean-field theory
(DMFT) [27,28], respectively. At half filling, the DMRG
studies have reported the existence of an intermediate
metallic phase between a Mott insulating phase and a
charge-order (CO) phase in the ground-state phase dia-
gram. On the other hand, the DMFT study for zero
temperature has not found evidence for the intermediate
phase [27]. For square lattices, a finite-temperature quan-
tum Monte Carlo (QMC) study has also suggested the
emergence of an intermediate paramagnetic metallic phase
between the antiferromagnetic (AF) and CO phases
[29,30]. However, such a phase diagram cannot be con-
clusive in the finite-temperature studies because of the
Mermin-Wagner theorem.
Another important open issue is found when carriers are

doped into the half-filled system. The DMFT study on the
Holstein model has revealed the presence of a coexisting
phase of CO and SC which is not prevented by the phase
separation (PS) [31]. It is interesting to ask whether the
coexistence also exists in two dimensions. The connection
between the SC and PS is intriguing and has been discussed
in the literature [32,33] for a different context, i.e., of a three-
band Hubbard model as a model for the cuprates. Recently,
their strong connections were observed in the mVMC
studies on the Hubbard model [15] and ab initio effective
Hamiltonian of electron-doped LaFeAsO [21]. A natural
question here is whether a phonon-driven PS also has a
connection in the case of the s-wave SC. In this Letter, we
study these issues by using the mVMC method.
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Model.—The Hamiltonian we consider here is given by

H ¼ −t
X
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where t, U, g, and Ω represent the hopping amplitude, the
on-site interaction strength between electrons, the electron-
phonon interaction strength, and the phonon frequency,
respectively. ciσ ðc†iσÞ represents the annihilation (creation)
operator of an electron with spin σ (¼ ↑ or ↓) at the site i.
The particle number operators niσ and ni are defined by
niσ ¼ c†iσciσ and ni ¼ ni↑ þ ni↓. xi and pi are the lattice
displacement operator and its conjugate momentum
operator, respectively. xi relates to the annihilation
(creation) boson (phonon) operator biðb†i Þ as xi¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=2MΩÞp ðbiþb†i Þ. The dimensionless electron-phonon
interaction strength λ is defined as the ratio of the lattice
deformation energy to half the bandwidth W=2 ¼ 4t, and
we obtain λ ¼ g2=ðMΩ2WÞ, whereM is the mass of single-
component nuclei. If we consider the path-integral repre-
sentation of the partition function and integrate out the
phonon degrees of freedom, the model is exactly mapped
onto the Hubbard model with the effective dynamical on-
site interaction UeffðωÞ ¼ U − λW=½1 − ðω=ΩÞ2�. In this
Letter, we set M ¼ t ¼ 1 as the unit of mass and energy.
We consider N ¼ L2 systems on the square lattice with Ne
electrons and impose the periodic (antiperiodic) boundary
condition in the x (y) direction to satisfy the closed-shell
condition. The filling factor and doping (hole) concen-
tration are given by ρ ¼ Ne=N and δ ¼ 1 − ρ, respectively.
Method.—Our variational wave function takes the fol-

lowing form: jψi ¼ Pel−phðjψ elijψphiÞ [23]. Here, jψ eli and
jψphi represent variational wave functions for electrons and
phonons, respectively. Pel−ph is the correlation factor that
takes into account the entanglement between electrons
and phonons. Its explicit form is given by Pel−ph ¼
exp ðPi;jαijxinjÞ, where αij are variational parameters.
As jψ eli, we adopt the generalized pairing wave

function with the Gutzwiller [34] and Jastrow correlation
factors [35]: jψ eli ¼ PJPGjϕpairi. The generalized
pairing wave function takes the form of jϕpairi ¼
ðPN

i;j¼1 fijc
†
i↑c

†
j↓ÞNe=2j0i, where fij are variational param-

eters. This is a generalization of the Hartree-Fock-
Bogoliubov–type wave function with AF, CO, or SC orders
[13,36] and, thus, flexibly describes these states as well as
paramagnetic metals (PMs). In order to reduce the number
of independent variational parameters, we assume that fij
have a sublattice structure such that fij depend on the
relative vector ri − rj and a sublattice index of the site i
which we denote as ηðiÞ. Thus, fij ¼ fηðiÞðri − rjÞ. In the
present study, we assume a 2 × 2 sublattice structure and

the number of independent fij reduces from N2 to
2 × 2 × N. We also assume a translational symmetry for
variational parameters in the correlation factors.
For jψphi, we use the tensor product of phonon wave

functions with wave vectors q: jψphi ¼ Q
qjψph

q i. jψph
q i is

expanded in terms of phonon Fock states jmqi as

jψph
q i ¼ Pmmax

q

mq¼0 cmq
jmqi. Here, mmax

q are controllable cut-

offs for the number of phonons and cmq
are treated as

variational parameters of real numbers. The number of
variational parameters is

P
qðmmax

q þ 1Þ, which is equal to
Nðmmax þ 1Þ if we take mmax

q ¼ mmax. In this study, we
checked the convergence of physical quantities as a
function of the cutoff and we typically took mmax

q ¼
10–40 for q ¼ ðπ; πÞ and mmax

q ¼ 5 for others. As initial
states in the optimization of variational parameters, we
considered the noninteracting Fermi sea (PM state), SC,
AF, CO, and coexisting states of SCþ AF and SCþ CO.
Half-filled case.—We consider two phonon frequencies,

an intermediate frequency Ω ¼ 8t (equal to the bandwidth
W) and a smaller one Ω ¼ t. In Fig. 1, we summarize our
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FIG. 1. Ground-state phase diagram of the half-filled Holstein-
Hubbard model on a square lattice at (a) Ω ¼ 8t and (b) Ω ¼ t.
The blue squares and red circles represent the boundaries of CO
and AF, respectively. Error bars are drawn, but most of them are
smaller than the symbol size. Solid lines are used to guide the eye.
Dashed lines represent λ ¼ U=8t. Based on the fact that if λ ¼ 0,
the system is an AF insulator for any U > 0 [37], we put the
starting point of the AF boundary at the origin. The shaded region
represents the intermediate PM or weak SC phase.

PRL 119, 197001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 NOVEMBER 2017

197001-2



results in the ground-state phase diagram in the
U-λ plane. The phase diagram includes the boundary
of the AF and CO phases. To distinguish each phase,
we measured the spin structure factor SsðqÞ ¼
ð1=3NÞPi;jhSi · Sjieiq·ðri−rjÞ and the charge structure factor
ScðqÞ ¼ ð1=NÞPi;jðhninji − ρ2Þeiq·ðri−rjÞ.
One of the main findings in this Letter is the existence of

an intermediate phase sandwiched by the AF and CO
phases around U ∼ λW. For Ω ¼ 8t, we found a wide
intermediate phase. For the smaller frequency Ω ¼ t, this
phase is narrowed but still exists for U ≲ 2. The shrinkage
of the intermediate region for small Ω was also observed in
one [24,25] and infinite [28] dimensions. Previous QMC
studies suggested the intermediate region at U ¼ 5t
[29,30]. However, the wider intermediate region in those
studies is probably because their calculation is at finite
temperature T=t ¼ 0.25.
In Figs. 2(a) and 2(b), we plot the spin or charge structure

factor Ss=cðπ; πÞ=N as a function of λ at ðΩ=t; U=tÞ ¼
ð8; 8Þ and ðΩ=t; U=tÞ ¼ ð1; 8Þ, respectively. In the
intermediate region, the values of Ss=cðπ; πÞ=N vanish
after its extrapolation to the thermodynamic limit (see
Supplemental Material [38] for the extrapolation pro-
cedure). The presence of the intermediate phase is further
evidenced by the two first-order transitions signaled by two
energy-level crossings as a function of λ, where the AF
phase energy crosses with the intermediate phase energy at

λ ∼ 0.91, as shown in Fig. 3(a), and then the latter crosses
with the CO phase slightly above λ ∼ 1.07, as in Fig. 3(b),
with increasing λ at fixed U and Ω. One may infer that the
antiadiabatic or the adiabatic limits may further give useful
insights. These are examined in Supplemental Material
[38]. In the intermediate region, it is likely that weak SC
orders emerge, while expected amplitudes of the order
are too weak; thus, we could not distinguish them from
PM states in the available data of finite systems (see
Supplemental Material [38]).
Doped case.—We now study the doped region. In Fig. 4,

we first present our ground-state phase diagram atU ¼ 0 in
the δ-λ plane for Ω ¼ 8t and Ω ¼ t, because the U ¼ 0
phase diagram captures an essential aspect. For U ¼ 0, the
effective interaction UeffðωÞ has negative parts for ω < Ω,
which lead to s-wave SC states except for the gapped CO
phase at half filling. In our phase diagram, the SCþ CO
phase is absent. Instead, the PS region appears adjacent to
the CO phase at half filling. We find that for the smaller
phonon frequency, the PS region is enlarged. In the
Supplemental Material [38], we present the phase diagram
in the adiabatic limit as the extreme case. In Fig. 4, we also
plot Scðπ; πÞ=N and the long-range part of the s-wave
SC correlation function P∞

s , which is defined by P∞
s ¼

ð1=MÞP ffiffi
2

p
L=4<jrjPsðrÞ. Here, r is the relative position

vectors belonging to ð−L=2; L=2�2, M is the number of
vectors satisfying

ffiffiffi
2

p
L=4< jrj< ffiffiffi

2
p

L=2, and the SC func-
tionPsðrÞ is defined byPsðrÞ¼ð1=NÞPrihΔ†

sðriÞΔsðriþrÞi
with the order parameter ΔsðriÞ ¼ cri↑cri↓.
In Fig. 5(a), we show physical quantities which were

used to determine the phase diagrams in Fig. 4 in an
example at ðΩ=t; U=t; λÞ ¼ ð8; 0; 0.3Þ. We also show an
interacting case for ðΩ=t; U=t; λÞ ¼ ð8; 8; 1.3Þ in Fig. 5(b)
for comparison. Since the model is mapped, in the anti-
adiabatic limit, to the standard Hubbard model with the on-
site interaction Ueff ¼ U −Wλ, the comparison between
the interacting and noninteracting cases with the same Ueff
may provide us with insight for largeΩ. The cases shown in
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FIG. 2. Ssðπ; πÞ=N and Scðπ; πÞ=N as functions of λ at
(a) ðΩ=t; U=tÞ ¼ ð8; 8Þ and (b) ðΩ=t; U=tÞ = (1,8), respectively.
The vertical dashed line represents Ueff ¼ 0. The shaded region
indicates the intermediate metallic (weakly SC) phase.
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FIG. 3. E=N − λ curves of PM (weak SC) states crossing with
(a) AF and (b) CO states at ðρ;Ω=t; U=tÞ ¼ ð1; 8; 8Þ. The paths
are along the vertical line at U=t ¼ 8 at the top right of Fig. 1(a).
The curves are obtained by gradually changing λ (in the direction
indicated as colored arrows). Unimportant linear terms f1ðλÞ and
f2ðλÞ ∝ λ are subtracted from E=N for clarity. The crossing
points are indicated as black arrows.
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Figs. 5(a) and 5(b) indeed have the same Ueff ¼ −2.4. The
value of Scðπ; πÞ=N decreases monotonically and the
CO eventually disappears at δ≃ 0.1 and 0.2 for U=t ¼ 0
[Fig. 5(a)] and U=t ¼ 8 [Fig. 5(b)], respectively. On the
other hand, the value of P∞

s increases as δ increases and we
clearly observe the SC phase. For small δ, a CO order and an
s-wave SC order coexist. By the Maxwell construction for
the δ-μ curve, however, we find that the SCþ CO phase is
swallowed up by the PS region (0<δ<0.14 forU=t ¼ 0 and
0<δ<0.37 for U=t¼8). Here, μ is the chemical potential
which was calculated by μðN̄eÞ¼½EðNeÞ−EðN0

eÞ�=
ðNe−N0

eÞ. Here, E is the total energy, (Ne, N0
e) are the

electron numbers, and we obtain the chemical potential at
the mid filling N̄e¼ðNeþN0

eÞ=2. Our Hamiltonian has the
particle-hole symmetry atμ ¼ −8λ −U=2 ¼ −2.4 and−6.4
for Figs. 5(a) and 5(b), respectively. Since this value is above
the line used for the Maxwell construction, there is a charge
gap at half filling. For the interacting case Fig. 5(b), the
charge gap is even larger. We also present the negative
inverse uniform charge susceptibility −χ−1c ¼ dμ=dρ in
Fig. 5. In our model, the spinodal point δs, where the
uniform charge susceptibility diverges (χ−1c ¼ 0), coincides
with the critical point of the CO and, therefore, the PS is
driven by the CO (see also the results for the adiabatic limit
in the Supplemental Material [38]).
Comparisons between Figs. 5(a) and 5(b) show a quanti-

tative difference that the CO (SC) orders are enhanced
(suppressed) for large U=t. However, we find a universal
common feature both in Figs. 5(a) and 5(b); a clear

one-to-one correspondence among the peak of the SC order,
the spinodal point, and the border of the CO phase thus
indicates tight connections of the mechanism of the SC, CO,
and uniform charge instability. The strong effective attrac-
tive interaction of carriers is certainly the key, because it
causes all of these three properties. The strong attraction is
caused by the electron-phonon interaction here, while the
resultant charge fluctuations may also work as additional
glue of the Cooper pair. The same trend between the
enhancement of the s-wave SC and the uniform charge
susceptibility has been reported for d-wave SC in the
Hubbardmodel [15] and extended s-wave SC in the ab initio
effective Hamiltonian for LaFeAsO [21] as well.
To summarize, by studying the ground states of the

Holstein-Hubbard model on a square lattice, we have
clarified where the s-wave SC is enhanced in the phase
diagram. At half filling, we have found an intermediate
metallic or weakly SC region sandwiched by the CO and
AF phases. In the doped case, the SC is dramatically
enhanced, but a wide PS region triggered by the CO largely
hinders the SC and completely preempts the SCþ CO
phase. We have revealed that the SC is optimized at the
border of the PS. These findings have been obtained by the
VMC method extended for electron-phonon coupled sys-
tems. Our method is quite flexible, and therefore it will be
also useful to study more complicated systems such as
ab initio Hamiltonians of high-Tc cuprates, where several
different phonon modes are present.
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FIG. 4. Ground-state phase diagrams of the Holstein model in
the δ-λ plane at (a) Ω ¼ 8t and (b) Ω ¼ t. In the vertical axis,
Scðπ; πÞ=N (red squares) and P∞

s (color plots) for L ¼ 14 are
plotted in the CO and SC phases, respectively. Black squares in
the bottom plane represent boundaries between the PS and
s-wave SC regions. White areas denote the PS regions. Thick
red lines at δ ¼ 0 indicate the CO phase.
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FIG. 5. Physical quantities Scðπ; πÞ=N, P∞
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functions of doping δ at (a) ðΩ=t; U=t; λÞ ¼ ð8; 0; 0.3Þ and
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