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The nuclear matrix elements for the spin operator and the momentum quadrupole operator are important
for the interpretation of precision atomic physics experiments that search for violations of local Lorentz and
CPT symmetry and for new spin-dependent forces. We use the configuration-interaction nuclear shell
model and self-consistent mean-field theory to calculate the momentum matrix elements for 21Ne, 23Na,
133Cs, 173Yb, and 201Hg. We show that these momentum matrix are strongly suppressed by the many-body
correlations, in contrast to the well-known enhancement of the spatial quadrupole nuclear matrix elements.
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Several types of precision low-energy tests of the stan-
dard model use nuclear-spin-polarized atoms to achieve
very high sensitivity by relying on long nuclear-spin
coherence times that are possible with atoms in 1S0
ground state, such as 3He, 21Ne, 129Xe, 131Xe, 173Yb,
199Hg, and 201Hg. Such tests include searches for violation
of local Lorentz and CPT symmetry [1–4], and for new
spin-dependent forces mediated by light particles, such as
an axion [5–10].
The interpretation and comparison of these experiments

requires knowledge of nuclear matrix elements responsible
for new interactions beyond the standard model. A number
of simple models have been used to estimate the relevant
nuclear matrix elements [11–16], but few detailed nuclear
structure calculations have been performed so far for this
purpose. This can be contrasted with a large number of
nuclear structure calculations performed to estimate the
scattering cross sections for dark-matter particles [17–19]
and rates for neutrinoless double-beta decay [20].
The nuclear matrix elements relevant in searches for

local Lorentz invariance violation (LLIV) within the
standard model extension (SME) are derived in [11].
Here we focus on matrix elements that generate couplings
to CPT-odd bμ and CPT-even cμν terms in the SME
Lagrangian for fermions,

L ¼ 1

2
iψ̄ðγν þ cμνγμÞ∂ν

↔
ψ − ψ̄ðmþ bμγ5γμÞψ : ð1Þ

For nonrelativistic nucleon motion they generate an energy
shift

H ¼ −2bjSj − ðcjk þ c00δjk=2Þpjpk=m; ð2Þ
where Sj is the spin operator, pj is the momentum operator,
and m is the mass of the fermion. Traditionally, LLIV

effects and spin-dependent forces have been analyzed
separately at the level of neutrons and protons under the
assumption that they are independent. This provides a
way to roughly classify the experiments without making
assumptions about a microscopic theory that would likely
generate comparable effects in neutrons and protons.
For particles that are on average at rest, only the spherical
rank-2 components of the tensor pipj give a finite energy
shift. Using the Wigner-Eckart theorem, they can be
expressed in terms of the matrix elements of the momentum
quadrupole tensor operator M̂ ¼ 2p2

z − p2
x − p2

y,

M ¼ hI; IjM̂jI; Ii ¼ hI; Ij2p2
z − p2

x − p2
yjI; Ii; ð3Þ

for a nucleus with spin I and its projection Iz ¼ I. In the
nucleus there are two components for this: proton,Mp, and
neutron, Mn. The best current limits on LLIV effects
currently come from the quadrupole momentum matrix
element in the nucleus 21Ne [4]. The calculations for 21Ne
[4] were based on a simple single-particle estimate for the
odd valence neutron. Flambaum et al. [14,16] have
presented a model where momentum quadrupole moment
(M) is related to the experimental spatial quadrupole
moment (Q),

Q ¼ hI; IjQ̂jI; Ii ¼ hI; Ij2z2 − x2 − y2jI; Ii; ð4Þ

with two components Qp and Qn.
In addition to 21Ne (odd nucleon), in this Letter we

consider four other nuclei that all have I ≥ 3=2 that
is required for the tensor matrix elements to be nonzero.
Three heavy nuclei 133Cs (odd proton), 173Yb (odd
neutron), and 201Hg (odd neutron) are used widely for
atomic NMR studies. 133Cs can be used in an alkali-metal
comagnetometer, using techniques similar to [21]. 173Yb
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can be used using an optical dipole trap [1]. LLIV for 201Hg
was studied in [22]. For consistency we also consider the
odd-proton sd shell nucleus 23Na. We present self-consis-
tent mean-field model (SCMF) calculations for all of these
nuclei that are consistent with the experimental Q for
protons. For heavy nuclei the momentum matrix elements
M are close to zero within the theoretical uncertainty. We
give a simple explanation for this result. These results are
inconsistent with previous calculations [14,16]. For 21Ne
and 23Na we compare the SCMF results to those from the
configuration-interaction (CI) shell model. Within the CI
model it is essential to include core polarization (CP) that
reduces the momentum matrix elements compared to those
obtained in the sd shell valence space. The consistency of
the SCMF and CI results for 21Ne and 23Na suggest small
but robust nonzero values for the tensor momentum matrix
elements.
The SCMF model has proved to be quite reliable for

calculating matrix elements of one-body operators such as
the Q in deformed nuclei [23]. Here we use the Hartree-
Fock-Bogoliubov method [24,25], with the Gogny D1S
interaction [26]. The odd-particle orbital is blocked and
time-odd fields are taken into account in the self-consistent
process. Axial symmetry is preserved so that the different
mean-field configurations can be labeled with the K
quantum number of deformed nuclei. Reflection symmetry
is allowed to be broken, but in the isotopes treated here
parity remains a good quantum number. SCMF results for
21Ne, 23Na, 133Cs, 173Yb, and 201Hg are shown in Figs. 1–3
as a function of the deformation parameter β2. For 133Cs and
201Hg the energy has a broad minimum around β2 ¼ 0,
whereas 21Ne and 173Yb have a large prolate deformation.
The experimental Q values as shown in these figures lie

near the SCMF energy minimum. The M cross zero near
where the SCMF energy has a minimum. These results
imply jMpj < 10 and jMnj < 10 (in units of m MeV).
A more precise limit or a nonzero value might be obtainable
if the calculations were extended beyond mean field to
include fluctuations around the energy minima, for exam-
ple by generator coordinate method (GCM). For 133Cs,
173Yb, and 201Hg, these limits are a factor of 5 smaller than
the values obtained by Flambaum et al. [14,16], because
they do not take into account the total energy minimization.
The reason for this result can be seen easily with a very

simple density-functional model which generalizes the
harmonic oscillator model of Bohr and Mottelson [27].
We take the energy functional as

E ¼ hΨj p
2

2m
jΨi þ

Z
d3rV½ρðrÞ�; ð5Þ

where V is an interaction-energy functional depending only
on the local density ρðrÞ ¼ hΨja†rarjΨi. Consider the
change in energy when the wave function is changed by

the scaling transformation for the i nucleons Ψ0ðriÞ ¼
Ψðr0iÞ, where r0 ¼ ðx0; y0; z0Þ ¼ ðxe−ε=2; ye−ε=2; zeεÞ. The
interaction energy remains the same with the new wave
function because the Jacobian for the transformation of
variables is unity, i.e., d3r ¼ d3r0. The kinetic term does
change, depending on ε as
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FIG. 1. Results of the SCMF calculations for 133Cs and 201Hg.
Four curves are shown as a function of the constrained β2 value.
The dashed line labeled E is the SCMF energy in units of MeV
relative to its minimum. The green line labeled Qp is the charge
quadrupole moment in units of e fm2. The blue line labeledMn is
the neutron-momentum quadrupole moment in units of m MeV,
where m is the nucleon mass. The red line labeled Mp is the
proton-momentum quadrupole moment in units of m MeV.
The experimental charge quadrupole moment [28] is shown by
the black circle on the green line.
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FIG. 2. Results of the SCMF calculations for 173Yb. The labels
and units are the same as Fig. 1, except that E has been multiplied
by 10.
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1

2m
hp2iε ¼ 1

2m
ðhp2

xieε þ hp2
yieε þ hp2

zie−2εÞ: ð6Þ

The energy is minimum in the ground state implying
dhTiε=dϵ ¼ 0. Carrying out the algebra, one finds that
the derivative vanishes only if M ¼ 2hp2

zi − hp2
xi−

hp2
yi ¼ 0. As discussed in [27], the equilibrium condition

is the isotropy of the velocity distribution; it is also related
to the Bohr–van Leeuwen theorem of absence of magneti-
zation in the equilibrated classical gas of charged particles.
This result applies to the isoscalar combination of the M
values, Mp þMn. It is possible that there is still some
nonzero isovector component to M (proportional to
Mp −Mn). Also the momentum-dependent part of the
interaction could give some nonzero isoscalar part. There
is an implicit momentum dependence associated with the
exchange operators built into the D1S. Also, the spin-orbit
term involves the momentum explicitly. But the D1S
interaction is dominated by the central terms.
In [4] the matrix element for 21Ne was obtained from the

simple assumption that it is described by a neutron in the
0d3=2 orbital outside of a 20Ne core. The result from this
model is given in Table I. This simple model does not
reproduce the experimental value for Qp. 21Ne is better
described in the full 0d5=2; 1s1=2; 0d3=2 (sd) shell-model
basis with USDB Hamiltonian that has been globally
validated on properties of nuclei in that mass region
[29]. For 21Ne the spin matrix elements assuming the
simple 0d3=2 model are hSzpi ¼ 0 and hSzni ¼ −0.3 and

the magnetic moment is μ ¼ 1.148. The full sd CI results
are hSzpi ¼ 0.022 and hSzni ¼ 0.292 and μ ¼ −0.720. The
latter is in reasonable agreement with the experimental
value of μexp ¼ −0.662.
The CI results for the quadrupole matrix elements are

given in Tables I and II. The calculated Qp is about a factor
of 2 smaller than experiment. It is well known that the
quadrupole observables require an effective charge [30].
This comes from core polarization that is related to the
admixture of the giant quadrupole resonance at an oscillator
energy of 2ℏω. Thus, the quadrupole moments are calcu-
lated as

Qp ¼ Qsd
p ð1þ δppÞ þQsd

n δnp;

Qn ¼ Qsd
n ð1þ δnnÞ þQsd

p δpn; ð7Þ

where δvc are the corrections due to the polarization of the
core nucleons (c) by the valence nucleons (v). For N ∼ Z
one can use δpp ¼ δnn ¼ δp and δpn ¼ δnp ¼ δn. Values of
δp ¼ 0.36 and δn ¼ 0.45 are the effective charge param-
eters appropriate for sd-shell E2 observables [30]. The
results with these effective charges are in Table I labeled
CIþ CP. With effective charges the Qp is enhanced and
agrees with experiment. We can also note that the consid-
eration of small deformations in [16] is not reliable, as
quantum fluctuations become very large.
The same polarization physics applies for the momentum

anisotropy operator, but with the opposite sign of the
effective charge. The expression is the same as Eq. (7) but
with Q replaced by M and a change of sign for all of the δ.

TABLE I. Quadrupole matrix elements for 21Ne, Iπ ¼ 3=2þ.
CP is the core-polarization correction. The experimental value is
from [28].

Qp
(fm2)

Qn
(fm2)

Mp
(m MeV)

Mn
(m MeV)

Experiment 10.3(8)
ν0d3=2 0 −4.5 0 −18.2
CI 5.4 6.4 21.9 25.9
CIþ CP 10.2 11.0 2.7 7.0
SCMF 8.6 9.7 2.8 4.2

TABLE II. Quadrupole matrix elements for 23Na, Iπ ¼ 3=2þ.
CP is the core-polarization correction. The experimental value is
from [28].

Qp
(fm2)

Qn
(fm2)

Mp
(m MeV)

Mn
(m MeV)

Experiment 10.45(10)
CI 5.8 6.3 23.7 25.2
CIþ CP 10.7 11.2 3.6 5.9
SCMF 10.3 11.3 3.2 3.6
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FIG. 3. Results of the SCMF calculations for 21Ne and 23Na.
The labels and units are the same as Fig. 1.
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The sign may be seen from the perturbative formula for the
polarization contribution to the moment of an operator O,

δO ¼
X
p;h

hpjVjhi 1

Ep − Eh
hpjOjhi; ð8Þ

where p, h are particle and hole orbitals. For harmonic
oscillator orbitals p and h are two major shells apart
(ΔN ¼ 2 where N ¼ 2nþ l), and the matrix elements of
the operators Q̂ and M̂ are related by

hpjQ̂jhi ¼ −
1

m2ω2
0

hpjM̂jhi; ð9Þ

where ω0 is the oscillator frequency. Applying the above
effective charges with the opposite sign, we obtain the M
given in Table I. The M are strongly reduced by core
polarization. The SCMF results for 21Ne and 23Na are
shown in Fig. 3. The SCMF results at the energy minimum
are given in the last lines of Tables I and II. The CI and
SCMF results are fairly consistent. Given this consistency,
we suggest that the M matrix elements for 21Ne are small
but not zero: Mp ¼ 3ð1Þ and Mn ¼ 5ð2Þ m MeV.
In summary, we have presented new calculations for the

momentum matrix elements relevant for low-energy tests of
local Lorentz invarianceviolation involving polarized nuclear
spins. With our SCMF calculations we showed that momen-
tumquadrupoles are small, andexplain this usingavariational
principle for the energy with momentum-independent inter-
actions. Previous calculations by Flambaum et al. [14,16]
make a connection between the experimental spatial quadru-
pole moment and the momentum quadrupole moments. In
contrast, we find that these two kinds of moments are not
connected: the spatial matrix element is strongly enhanced in
deformed nuclei, but the momentum matrix element is small
and close to zero in the nuclei studied here.
For the heavy nuclei the best we can do with the SCMF

model is to place an upper limit on the quadrupole
momentum matrix element M of about 10 m MeV. But
theM values are not zero, and until better calculations can be
done, we would suggest a nominal value of one m MeV be
used to interpret LLIV experiments for heavy nuclei. Even
though this is much smaller than Flambaum’s estimates
[14,16], it still provides useful constraints on the non-
standard-model parameters from LLIV experiments.
The GCM often used in nuclear physics to deal with

quantum correlations beyond the mean field requires over-
laps of operators between Hartree-Fock-Bogoliubov wave
functions. The explicit form of those overlaps do depend on
the quantum numbers of the system, and time-odd effects
have to be considered in odd-A nuclei. As a consequence,
just a very small fraction of theGCMcalculations so far have
addressed odd systems (see Ref. [31] for a recent example,
which includes symmetry restorations). Recent advances in
the techniques required [32] suggest that GCM computer

codes for odd-A systemswill become available soon andwill
be as popular as the ones for even-even systems. As the
computational cost of theGCMscalesmoderatelywithmass
number A, the new developments will allow calculations in
both light and heavy nuclear systems.
For 21Ne and 23Na we use both the SCMF and configu-

ration interaction models. The consistency of these models
provides some confidence in a nonzero M value that
involves both protons and neutrons. Previously, a simple
model based on a valence neutron was used to put limit on
the LLIV non-standard-model parameters for the neutron
[4]. Our result implies that this limit should be applied to a
combination of proton and neutron that is approximately
the isoscalar combination of the two. The M moments
should be calculated in ab initio approaches to light nuclei
[33–35], to check the results obtained in the more phe-
nomenological models used here.
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