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We consider a simple Higgs portal dark-matter model, where the standard model is supplemented with a
complex scalar whose imaginary part plays the role of weakly interacting massive particle dark matter
(DM). We show that the direct DM detection cross section vanishes at the tree level and zero momentum
transfer due to a cancellation by virtue of a softly broken symmetry. This cancellation is operative for any
mediator masses. As a result, our electroweak-scale dark matter satisfies all of the phenomenological
constraints quite naturally.
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Introduction.—The “Higgs portal” [1] approach is a
promising venue for addressing the problem of dark matter.
It assumes that the only connection between the observable
and dark sectors is provided by the Higgs field. In this case,
dark matter (DM) can belong to the weakly interacting
massive particle (WIMP) category with the feature that the
DM scattering on nucleons is suppressed compared to that
of the standard WIMP due to the small Higgs-nucleon
coupling. Also, the collider constraints on such models
are rather weak, since DM production is mediated by the
Higgs field. This makes the Higgs portal an attractive
framework which naturally satisfies many phenomenologi-
cal constraints.
The simplest models include a real or complex singlet

DM; see, e.g., [2–9], where dark-matter stability is due
to Z2 or global U(1) symmetries in the dark sector. If the
latter is endowed with gauge symmetry, vector Higgs portal
dark matter arises naturally [10–12]. In this case, the
stabilizing symmetries are the discrete and continuous
symmetries inherent in the Yang-Mills and U(1) systems.
Finally, fermionic dark matter is also possible [13,14] with
the relevant symmetry being the corresponding fermion
number.
Recently, the WIMP paradigm and Higgs portal dark

matter, in particular, found themselves under pressure from
ever-improving direct DM detection bounds [15]. In the
simplest models, the preferred DM mass range is pushed
towards TeV values, although lower values cannot be
excluded at the moment [16]. This raises the question
whether there are classes of models where electroweak-
scale DM satisfies the direct detection constraints naturally.
The answer to this question is affirmative. An example of
such a class is provided by the “secluded dark-matter”
framework [17] whose main feature is DM annihilation
into unstable hidden sector states and which is natural in
the Higgs portal construction [18]. Other possibilities
explored in the literature include models with special
parameter choices, for instance, in order to facilitate the

coannihilation processes [19] or take advantage of some
cancellations in the direct detection amplitude [20].
In this work, we suggest a different possibility and

present a very simple Higgs portal model where the direct
DM detection amplitude is suppressed due to a cancellation
by virtue of a softly broken symmetry. The cancellation
requires no tuning and takes place for any parameter
choice. As a result, electroweak-scale WIMP dark matter
is found to be consistent with all of the constraints, thereby
underscoring the appeal of the WIMP paradigm.
Higgs portal and a complex scalar.—Consider an

extension of the standard model (SM) with a complex
scalar S interacting via the Higgs portal. Let us assume that
the system is invariant under a global U(1) S → eiαS, which
is broken softly by a mass term for S:

V ¼ V0 þ Vsoft;

V0 ¼ −
μ2H
2
jHj2 − μ2S

2
jSj2 þ λH

2
jHj4

þ λHSjHj2jSj2 þ λS
2
jSj4;

Vsoft ¼ −
μ02S
4
S2 þ H:c: ð1Þ

At the moment, we neglect higher-dimension U(1) breaking
operators which can be justified by treating the couplings as
spurions (to be discussed later). Also, we are assuming that
the term linear inS is forbidden by aZ2 subgroup of theU(1),
which remains unbroken in the spurion formalism. [The
domainwall problem associatedwith theZ2 breaking by hSi
is avoided if U(1) is gauged in the UV completion.]
The parameter μ02S can always be made real and positive

by phase redefinition. Thus, the system is invariant under
the “CP symmetry”

S → S�: ð2Þ
This symmetry remains unbroken by the S vacuum expect-
ation value, since for positive μ02S the vacuum expectation
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value (VEV) is real. It is due to the fact that only the μ02S
term is sensitive to the phase of the S field and the
dependence is − cosð2ArgSÞ. This immediately implies
stability of the imaginary component of S, which plays the
role of dark matter in our model.
Let us analyze the spectrum of the model. Decomposing

S as

S ¼ ðvs þ sþ iχÞ=
ffiffiffi
2

p
; ð3Þ

with real vs and χ being dark matter and HT¼ð0;vþhÞ=ffiffiffi
2

p
, we find the following stationary point conditions at

h ¼ 0, s ¼ 0:

μ2H ¼ λHv2 þ λHSv2s ;

μ2S ¼ λHSv2 þ λSv2s − μ02S : ð4Þ
Using these relations, the mass matrix for the CP-even
states ðh; sÞ is found to be

M2 ¼
�

λHv2 λHSvvs
λHSvvs λSv2s

�
; ð5Þ

while the mass of the pseudoscalar χ is

m2
χ ¼ μ02S : ð6Þ

M2 can be diagonalized by the orthogonal transformation
OTM2O ¼ diagðm2

h1
; m2

h2
Þ, where

O ¼
�

cos θ sin θ

− sin θ cos θ

�
ð7Þ

and the angle θ satisfies

tan 2θ ¼ 2λHSvvs
λSv2s − λHv2

: ð8Þ

The mass squared eigenvalues are given by

m2
h1;h2

¼ 1

2

�
λHv2 þ λSv2s ∓ λSv2s − λHv2

cos 2θ

�
: ð9Þ

We identify h1 with the 125 GeV Higgs boson. This leaves
four free parameters: mh2 , mχ , sin θ, and vs.
Cancellation in the direct detection amplitude.—The

tree-level diagrams for scattering of χ on matter involve
the t-channel exchange of a single h1 or h2 (Fig. 1). The
χ-χ-h1;2 couplings are given by

L ⊃ −
vs
2
χ2ðκχχh1h1 þ κχχh2h2Þ; ð10Þ

with

κχχh1 ¼ þm2
h1
=v2s sin θ;

κχχh2 ¼ −m2
h2
=v2s cos θ; ð11Þ

whereas the couplings of h1;2 to fermions f are given by

L ⊃ −ðh1 cos θ þ h2 sin θÞ
X
f

mf

v
f̄f: ð12Þ

Thus, the tree-level direct detection scattering amplitude is

AddðtÞ ∝ sin θ cos θ

�
m2

h2

t −m2
h2

−
m2

h1

t −m2
h1

�

≃ sin θ cos θ
tðm2

h2
−m2

h1
Þ

m2
h1
m2

h2

≃ 0; ð13Þ

because the momentum transfer in this process is negligibly
small, t≃ 0. Thus, the contributions from the h1 exchange
and the h2 exchange cancel each other up to tiny corrections
of the order of t=ð100 GeVÞ2. Note that this does not
require any relation between mh1 and mh2 , and the
cancellation occurs for any choice of model parameters.
It is instructive to examine the cancellation mechanism in

the interaction basis, i.e., in terms of the states h and s,
where only h couples to SM fermions. The relevant χ-χ-h
and χ-χ-s couplings are

L ⊃ −
1

2
χ2ðλHSvhþ λSvssÞ; ð14Þ

while, for vanishing momentum transfer t, the propagator
matrix is proportional to

ðM2Þ−1 ¼ 1

detM2

�
λSv2s −λHSvvs

−λHSvvs λHv2

�
: ð15Þ

Since the SM fermions do not couple to s, the tree-level
direct detection amplitude at t ¼ 0 indeed vanishes:

Add ∝ ð λHSv; λSvs Þ:
�

λSv2s −λHSvvs
−λHSvvs λHv2

�
:

�
1

0

�
¼ 0:

ð16Þ

The cancellation is due to the structure of the potential
Eq. (1), where the U(1) symmetry is broken only by the
mass term. This can be traced back to the (pseudo-)
Goldstone nature of dark matter: χ is equivalent to the
angular component of S ¼ ρeiϕ, ϕ, whose interactions
vanish at zero momentum transfer. Introduction of the
mass term S2 does not affect the relevant vertex ϕϕρ,
which vanishes for ϕ on shell and zero momentum of ρ.

FIG. 1. Tree-level dark-matter scattering off SM matter.
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U(1)-breaking terms of higher dimension spoil the can-
cellation; however, as we show later, these can be highly
suppressed when the couplings are treated as spurions. We
note that a (technically) similar cancellation was observed
in Ref. [20], although it occurred for a specific parameter
choice and was not based on symmetry.
The cancellation is also spoiled by loop effects. In

particular, higher-dimension U(1)-breaking terms are always
generated at one loop. We discuss those in the next section.
There are also further one-loop corrections, not related toU(1)
breaking. The largest of themmodify only the hNN vertex at
zero momentum transfer and thus do not affect the cancella-
tion. Other corrections involve multiple Higgs couplings to
fermions and are subleading as long as λS is relatively large.A
complete analysis of loop corrections is beyond the scope of
this work, and we restrict ourselves to the loop effects due to
higher-dimension U(1)-breaking operators.
Effect of higher-dimension U(1)-breaking terms.—At

one loop, the following dimension-4 U(1)-breaking terms
are generated:

V1 ¼
λ0HS

2
jHj2S2 þ λ00S

4
jSj2S2 þ λ0S

4
S4 þ H:c: ð17Þ

The couplings vanish in the U(1) symmetric limit μ02S → 0
and are given by

λ0HS ¼
λHSλS
32π2

ln
μ2S þ μ02S
μ2S − μ02S

;

λ00S ¼
λ2S
8π2

ln
μ2S þ μ02S
μ2S − μ02S

;

λ0S ¼
λ2S

64π2

�
μ2S
μ02S

ln
μ2S − μ02S
μ2S þ μ02S

þ 2

�
: ð18Þ

(This provides a good estimate of the loop effects for
μ02S < μ2S. A more precise result can be obtained via the
Coleman-Weinberg effective potential expansion around
the true vacuum. The full analysis of loop corrections will
be performed in our subsequent work.) They are all real and
do not spoil the symmetry S → S�, nor is this symmetry
broken by the vacuum. Let us summarize the changes in the
spectrum and couplings induced by V1. The stationary
point conditions at h ¼ 0, s ¼ 0 now become

μ2H ¼ λHv2 þ ðλHS þ λ0HSÞv2s ;
μ2S ¼ ðλHS þ λ0HSÞv2 þ ðλS þ λ0S þ λ00SÞv2s − μ02S ; ð19Þ

while the ðh; sÞ mass matrix is

M2 ¼
 

λHv2 ðλHS þ λ0HSÞvvs
ðλHS þ λ0HSÞvvs ðλS þ λ0S þ λ00SÞv2s

!
: ð20Þ

The expressions for the mass squared eigenvalues as well as
the mixing angle sin θ are therefore obtained by replacing

λS → λS þ λ0S þ λ00S and λHS → λHS þ λ0HS in Eqs. (8) and
(9). The dark-matter mass becomes

m2
χ ¼ μ02S − λ0HSv

2 − ð2λ0S þ λ00S=2Þv2s : ð21Þ

The most important effect of the new terms is that they
modify the dark-matter couplings to h1;2 in Eq. (10):

κχχh1 ¼ þ sin θ

�
m2

h1

v2s
− 4λ0S − λ00S

�
þ 2λ0HSv

vs
cos θ;

κχχh2 ¼ − cos θ

�
m2

h2

v2s
− 4λ0S − λ00S

�
þ 2λ0HSv

vs
sin θ: ð22Þ

Obviously, the extra terms in κχχh1;2 do not cancel in the
direct detection amplitude, in general. However, this effect
is loop suppressed, resulting in very small DM detection
rates, which we quantify in the next section.
Parameter space analysis.—In this section, we perform a

numerical analysis of the relevant constraints on the model,
using the software MICROMEGAS [21]. Our dark-matter
candidate χ belongs to the WIMP category, and we impose
the Planck constraintΩh2 ¼ 0.1197� 0.0022 [22] at 3σ on
its relic abundance. The most stringent direct DM detection
bound is due to XENON1T [15]. Also, one needs to make
sure that the perturbative calculations can be trusted,
which can be interpreted as the perturbative unitarity
constraint λS < 8π=3 [23] derived from h2h2 → h2h2 scat-
tering at high energies. Finally, if dark matter is light, it
can affect the LHC Higgs signal strength μ ¼ 1.09þ0.11

−0.10 [24]
via invisible Higgs decay. This results in the bound
Brðh1 → invÞ ≤ 0.11 at 95% confidence level.
The plots in Fig. 2 show the allowed parameter space in

the plane (mχ , v=vs), where the mixing angle and the
second Higgs mass are fixed to be sin θ ¼ 0.1 and
mh2 ¼ 300, 1000 GeV, respectively. The latter are consis-
tent with the electroweak precision measurements and the
Higgs data [25]. The red curve corresponds to the correct
relic DM abundance. It features the usual resonant annihi-
lation dips at mh1=2 and mh2=2. The main DM annihilation
channels are χχ→ bb̄;cc̄ for mχ ≲mW, χχ→WþW−;ZZ;
h1h1 for mW ≲mχ ≲mh2, and χχ → h2h2 for mh2 ≲mχ.
These are not affected by the above-described cancellation,
since the relevant momentum transfer is large, unlike that in
the DM-nucleon scattering. We see that the entire red band
from mχ ≃mh1=2 to 10 TeV is consistent with the other
constraints.
The direct detection bounds are weak, as expected from

the loop suppression of the amplitude. For heavy dark
matter, one can estimate an order of magnitude of the χ − N
cross section by setting the loop functions to one:

σχN ∼
sin2θ
64π5

m4
Nf

2
N

m4
h1
v2

m8
h2

m2
χv6s

; ð23Þ
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where mN is the nucleon mass and fN ∼ 0.3 parametrizes
the Higgs-nucleon coupling. This gives σχN in the ballpark
of 10−49 cm2 for sin θ ¼ 0.1, mh2 ¼ 300 GeV and TeV
dark-matter mass. On the other hand, the best XENON1T
limits are of the order of 10−46 cm2. For light dark matter,
there is an additional suppression factor of the order of
m4

χ=m4
h2
, since in the limit mχ → 0 the U(1) symmetry is

restored and the loop corrections vanish. We thus find that
the direct DM detection constraints are quite loose and, in
fact, superseded by the perturbative unitarity bound. The
latter excludes the upper parts of the plots, since vs below
or around the electroweak scale requires a large λS to
generate a given mh2 .
All in all, the cancellation mechanism provides sufficient

suppression of the direct detection amplitude such that the
entire range of dark-matter masses between 60 GeV and
10 TeV is allowed (depending on mh2 and sin θ). Our main
point is that, although the cancellation affects the DM
interaction with matter at zero momentum transfer, it does
not apply at the large momentum transfer relevant to DM
annihilation processes.
Our dark-matter candidate can potentially be detected at

the LHC, for instance, via monojet events with missing
energy. The analysis bears similarity to that of Ref. [26]. In
particular, one expects a substantial monojet rate when the
“heavy Higgs” h2 can decay into DM on shell, i.e.,
mh2 > 2mχ . The kinematic reach, however, is likely to
be limited to mh2 of the order of a few hundred GeV. A
more detailed analysis will be presented elsewhere.
Another venue to probe the model at the LHC would be

to study the Higgs couplings and search for a heavy Higgs
h2. The mixing of the Higgs with a SM singlet can be
detected through universal reduction of the Higgs cou-
plings, while h2 would appear as a heavy Higgs-like
resonance with reduced couplings to SM fields.
U(1)-breaking couplings as spurions.—The presented

scenario is expected to be a low-energy limit of a more

fundamental theory. Indeed, ourmodel does not explainwhy
the higher-dimension terms such as S4 are suppressed, why
the odd powers of S are absent, and how an explicit
symmetry-breaking term can arise at all. In the ultraviolet-
complete model, the U(1) could be gauged and the
symmetry-breaking terms would result from spontaneous
breaking. Inwhat follows, let us leave aside the “coincidence
problem” that μS ∼ μ0S (akin to the μ problem of supersym-
metry) and focus on the hierarchy of the symmetry-breaking
couplings.
To illustrate our main point, consider a simplified model

where the symmetry-breaking terms are induced by a VEV
of a single fieldΦ with charge qΦ, while S has charge qS. If

n≡ −2qS=qΦ ð24Þ
is a positive odd number, the U(1) is broken down to a Z2

subgroup such that interactions involving odd powers of S
are forbidden. For instance, an admissible choice would be
qΦ ¼ 3 and qS ¼ −2. Defining

ϵ≡ hΦi
Λ

; ð25Þ

with Λ being some high-energy scale associated with
heavier states, and ϵ ≪ 1, U(1) invariance requires that
the tree level couplings obey

μ02S ∼ hΦi2ϵn−2; λ0HS ∼ λ00S ∼ ϵn; λ0S ∼ ϵ2n: ð26Þ
The magnitude of the couplings in Eq. (26) is affected by

the loop corrections, in analogy with what we discussed
above, cf. Eq. (18). For instance, the loop contribution to
λ0HS is proportional to μ02S times the loop factor. Thus, it is
real for real μ02S , although the tree level λ0HS in Eq. (26)
generally is not.
Clearly, the tree level λ0HS, λ00S, and λ0S can be made

extremely small if the scale Λ is very high. Let us estimate
their lowest values. Given that we are interested in

FIG. 2. Allowed range of dark-matter mass mχ vs v=vs. The red band corresponds to the thermal DM relic abundance consistent with
the Planck measurements. The purple region is excluded by the Higgs invisible decay constraint, while the perturbative unitarity bound
is marked by the dashed line.
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μ0S ∼ 100 GeV, ϵn∼μ02S =Λ2∼ð100GeV=ΛÞ2≥10−32, where
the lower bound is reached for Λ close to the Planck scale.
Thus, λ0HS, λ

00
S can be as small as 10−32, while λ0S would be

even smaller.
If the underlying dynamics conserve CP, the couplings

are real and dark matter is stable due to the symmetry
S → S�. However, one generally expects CP violation to be
present even if suppressed. This introduces couplings linear
in χ which make dark matter unstable albeit long-lived. Let
us estimate its longest possible lifetime taking into account
only the most important factors: the ϵ suppression of the
decay amplitude and the relevant DM scale ofOð100 GeVÞ.
One then has

τDM ∼
8π

100 GeV
ϵ−2n ∼ 1039 s: ð27Þ

This is very much longer than the age of the Universe
∼1017 s, and DM can be considered stable for all practical
purposes. [Here, we have omitted another aspect of dark-
matter decay. Since both hΦi and hSi break the U(1), dark
matter has a tiny admixture of ImΦ as the state orthogonal to
the would-be Goldstone boson. The decay time of this
component of dark matter is longer than that of Eq. (27).]
This shows that the presence of U(1)-breaking terms is not
dangerous if the underlying dynamics takes place at a
high scale.
Summary.—We have presented a simple extension of the

standard model with a complex scalar featuring softly
broken U(1) symmetry. The imaginary part of this scalar
plays the role of dark matter. The resulting tree-level DM-
nucleon scattering amplitude exhibits a perfect cancellation
between the light and heavy Higgs contributions at zero
momentum transfer. This can be traced to the fact that U(1)
is broken only by a mass term, which is justified by treating
the U(1)-breaking couplings as spurions. The cancellation
does not persist at the loop level, and a small direct DM
detection rate is thus generated. Our numerical analysis
shows that a broad range of WIMP dark-matter mass,
roughly from 60 GeV to 10 TeV, is allowed in this model.
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