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Based on conformal symmetry we propose an exact formula for the four-point connectivities of Fortuin-
Kasteleyn clusters in the critical Ising model when the four points are anchored to the boundary. The explicit
solutionwe found displays logarithmic singularities.We check our prediction usingMonteCarlo simulations
on a triangular lattice, showing excellent agreement. Our findings could shed further light on the formidable
task of the characterization of logarithmic conformal field theories and on their relevance in physics.

DOI: 10.1103/PhysRevLett.119.191601

Introduction.—Conformal symmetry in two dimensions
[1] has been of extraordinary usefulness to study classical
statistical mechanics models at criticality since the 1980s. It
has notably found also extensive applications in the
quantum realm, spanning from gapless one-dimensional
systems [2], the quantum Hall effect [3], and entanglement
[4]. Two dimensional conformal invariant quantum field
theories (CFTs) and, in particular, Liouville theory are
moreover the cornerstone of world-sheet geometry in string
theory [5]. The simplest CFTs that capture the critical
behavior of lattice models and quantum spin chains are
unitary. Moreover, when their Hilbert space splits into a
finite number of representations of the conformal (or some
larger) symmetry are usually termed rational. CFTs are
classified according to their central charge c; for instance,
for a free massless boson c ¼ 1.
However unitary and rational theories are far from

exhausting the physically relevant conformally invariant
theories. In the beginning of the 1990s the groundbreaking
discovery [6] of an exact formula for the crossing prob-
ability in critical percolation forced to analyze theories
violating these two assumptions. Percolation is a simple
stochastic process where bonds or sites on a lattice can be
occupied independently with a certain probability. Since
the partition function is not affected by finite-size effects,
the central charge of a putative CFT describing critical
percolation is zero [7]. The existence of a nontrivial
formula for the crossing probability makes it a prominent
example of a nonunitary CFT (the only unitary CFT with
c ¼ 0 is trivial). For subsequent developments leading to
the formulation of the stochastic Lowener evolution we
refer to the reviews [8,9]. At the same time, it was
recognized that as far as the conditions of unitarity and
rationality are relaxed, CFT correlation functions can
display striking logarithmic singularities that are actually
the signatures of intricate realizations of the conformal
symmetry [10,11]. The class of nonunitary and generally
nonrational CFTs where these unconventional features
show up, was christened logarithmic CFTs. Such theories
were promptly argued to play a fundamental role in the

characterization of disordered systems in two dimensions
[12–14], for instance, by means of supersymmetry [15,16].
With these motivations, logarithmic CFTs were inves-

tigated in greater detail in the last decade, either from a
purely algebraic point of view [17], either constructing
lattice regularizations [16,18–20] or generalizing the study
of crossing formulas in critical percolation [21–23].
Recently [24], it has also been suggested that an analytic
nonunitary extension ofLiouville theory [25]might describe
the connectivity properties of critical bulk percolation and,
more generally, the Q-state Potts model. The domain of
applicability of Liouville theory in statistical mechanics is
currently an important open problem; see Refs. [26,27] and
also Ref. [28].
Despite these huge advances, a satisfactory understanding

of logarithmic CFTs is still a long way off. Moreover, it is
fair to say that few examples of explicit logarithmic
singularities have been found in familiar statistical models:
notably only in percolation [29,30] (c ¼ 0), dense polymers
[31–33]; see alsoRefs. [34,35] for applications to disordered
systems. An exact Coulomb gas approach to CFT correla-
tion functions [36–38] closely related to those considered in
this Letter reveals an infinite number of logarithmic cases.
These arise from operator mixing as is the case here. These
results suggest the possibility of logarithmic behavior in
multiple self-avoiding random walks (SAWs) [38].
In this Letter we show how a logarithmic singularity due

to operator mixing also arises in the context of arguably the
best-known model of statistical mechanics: the two-dimen-
sional Ising model; see Refs. [39,40] for a pedagogical
introduction to the richness of the model. This is remark-
able since it shows unambiguously that critical properties
of Ising clusters are ruled by a logarithmic CFT. Moreover
the four-point function we consider here, a four point
connectivity in the Fortuin-Kasteleyn (FK) representation
of the Ising model, is a natural observable that can be easily
simulated with Monte Carlo (MC) methods. Logarithmic
singularities in Ising connectivities were also argued to
exist in Refs. [41,42], in this Letter we demonstrate it
explicitly using CFT.
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Finally, our findings could shed further light on the
extremely challenging problem of the characterization of
logarithmic CFTs and on their applications to physics.
Four points connectivities in the Ising model.—It is

convenient to introduce the Ising FK clusters, starting from
the ferromagneticQ-state Potts model [43]; the Ising case is
recovered by setting Q ¼ 2. The model is defined on a
finite simply connected domain D of the plane, see Fig. 1,
and the choice of the underlying lattice is irrelevant at the
critical point. To introduce the notion of cluster connectiv-
ities, we should first recall the FK representation [44]. The
Q-state Potts model is defined in terms of spin variables
sðxÞ taking 1;…; Q different values; its partition function
can be expressed as a product over the lattice edges as

Z ¼
X
fsðxÞg

Y
hx;yi

½ð1 − pÞ þ pδsðxÞ;sðyÞ�; ð1Þ

where p is a parameter related to the temperature and the
product in Eq. (1) extends only to next-neighboring sites.
Suppose then to expand such a product: Each term in the
expansion can be represented graphically by drawing a
bond between x and y if the factor pδsðxÞsðyÞ is selected, and
leaving empty the bond if such a factor is absent. The set of
nonempty bonds in each term of the expansion then defines
a graph G on the underlying lattice that is called the FK
graph. Such a graph might contain Nc different connected
components (including isolated points), dubbed FK clus-
ters. Moreover, on each cluster the spin values are con-
strained to be the same because of the Kronecker delta in
Eq. (1). Summing over their possible Q values leads to the
following rewriting of the Q-state Potts model partition
function as a sum over graphs: Z ¼ P

Gð1 − pÞn̄bpnbQNc ,
where nb and n̄b are the number of occupied and empty
bonds in the graph G. For arbitrary non-negative Q, the
graph representation for Z is a generalized percolation
problem known as random cluster model, where bonds
occupied with probability p are not independent random

variables. The fundamental observables in the random
cluster model are the connectivities and they offer a purely
geometrical interpretation of the magnetic Potts model
phase transition. Connectivities represent the different
probabilities with which n points of the plane can be
partitioned into FK clusters. If the points are on the
boundary of the domain D, the total number of n-point
connectivities is clearly equal to the number of noncrossing
partitions of a set of n elements, i.e., the catalan numberCn;
for example, if n ¼ 4 there are C4 ¼ 14 of them. These
functions are, however, not linearly independent, since they
satisfy sum rules: for instance, the sum over all n-point
connectivities has to be 1. Following Ref. [45], it is possible
to show that a valid choice of n-point linearly independent
connectivities is given by all the probabilities associated
with configurations where no point is disconnected from
all the others (non-singleton partitions). In the specific
example of n ¼ 4 and x1, x2, x3, x4 on the boundary of D,
see again Fig. 1, a possible choice of linearly independent
connectivities is Pð1234Þ, Pð12Þð34Þ, and Pð14Þð23Þ. The func-
tion Pð1234Þ denotes the probability that all the four points
x1, x2, x3, and x4 are on the same FK cluster; Pð12Þð34Þ is
instead the probability that x1 and x2 are in the same cluster,
x3 and x4 are in the same cluster but these two are now
different and analogously for Pð14Þð23Þ. We also omitted for
simplicity the explicit spacial dependence. Notice that
when the points x1, x2, x3, and x4 are anchored to the
boundary the function Pð13Þð24Þ does not appear since two
clusters cannot cross.
Exact solution.—We turn now to the exact determination

of these three functions in the critical Ising model, using
arguments inspired by the seminal work of Ref. [6]. At the
critical point, conformal invariance allows one to map any
simply connected domain D of the plane by the Riemann
mapping theorem into the unit disk. Moreover, the points
x1, x2, x3, x4 are mapped to points w1, w2, w3, w4 lying at
the boundary (circumference) of such a disk. The three
connectivities Pð1234Þ; Pð12Þð34Þ, and Pð13Þð24Þ can be singled
out by computing Potts partition functions with specific
boundary conditions for the dual Potts spins [45]. As an
example, let us suppose to fix the values of the dual Potts
spins at the boundary of the disk to be 1, 2, 3, and 4 as in
Fig. 2 left and to compute the Potts partition function in this
case. Notice that this assignment will require at least four
available colors, i.e., Q ≥ 4, and it would be nonphysical
for the Ising model. It has, however, certainly sense if we
assume Q real and imagine to compute connectivities in
the random cluster model at any values of Q and take
eventually the limit Q → 2. Configurations of dual FK
clusters with such a particular choice of boundary con-
ditions cannot contain clusters that cross from regions with
boundary conditions α to regions with boundary conditions
β if α ≠ β. Dual FK clusters are represented schematically
by blue dashed curves in Fig. 2. Applying a duality
transformation to the Potts model partition function [43],

FIG. 1. TheQ-state Potts model is defined on a finite domainD
of the plane. FK graphs G on the underlying square lattice are
drawn in blue. The figure shows a particular configuration where
the four boundary points x1, x2, x3, and x4 are all connected by an
FK cluster thus contributing to Pð1234Þ.
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these configurations are in one-to-one correspondence with
configurations where a single FK cluster, the continuous
red curve in Fig. 2, connects the four boundary points. The
reasoning above allows us to compute the connectivities as
Potts partition functions with insertion of local operators
ϕðαjβÞ that switch the values of the dual spins at the
boundary from α → β, α; β ¼ 1;…; Q. In the jargon of
CFT, the fields ϕðαjβÞ are called boundary-condition-
changing operators. In this way, we can argue, for example,
that Pð1234Þ has to be proportional to the correlation
function of hϕð4j1Þðw1Þϕð1j2Þðw2Þϕð2j3Þðw3Þϕð3j4Þðw4Þi.
Let us briefly recall that in the simplest case, the scaling

fields ϕr;s of any CFT can be classified by two positive
integers r, s such that their scaling dimensions are

hr;s ¼
½rðmþ 1Þ − sm�2 − 1

4mðmþ 1Þ ; m ∈ R: ð2Þ

The parameter m is related to the central charge c of the
CFT through cðmÞ ¼ 1 − ½6=mðmþ 1Þ�, and in turn for the
Potts modelQ ¼ 4 cos2½π=ðmþ 1Þ�. The values hr;s can be
represented into a lattice, dubbed the Kac table; for a CFT
with c ¼ 1=2 as the Ising model, the Kac table is
represented in Fig. 2 on the right.
The boundary condition changing operator ϕðαjβÞ was

identified in Ref. [6] for any values of Q as the field ϕ1;3.
Notice that at c ¼ 1=2, the dimension of ϕ1;3 is h1;3 ¼ 1=2
and coincides with the one of the Ising order parameter σ,
when inserted at the boundary [46]; in this case the spin
operator σ transforms as the field ϕ2;1. In the construction
of the simplest conformal field theory describing the Z2

universality class these two fields can be actually identified
and, consequently, the operator product algebra of fϕ1;1;
ϕ2;1;ϕ1;2g closes. The self-consistent closure of the oper-
ator product algebra was used as a criterion in Ref. [1] to
build the whole family of minimal conformal models,

where only a finite numbers of Virasoro algebra represen-
tations should be considered and furthermore allows us to
classify all the possible conformal boundary conditions
[46]. However, when analyzing the connectivity properties
of the Ising FK clusters, the identification of ϕ1;3 with ϕ2;1

is no longer possible. According to the general theory [1],
see also Ref. [47], the four-point function of ϕ1;3 satisfies a
linear differential equation of degree 3. If we map the unit
disk to the upper half plane H and call z1;…; z4 the images
on the real axis of the boundary points w1;…; w4 we have

�Y4
i¼1

ϕ1;3ðziÞ
�

H
¼

�
z42z31

z21z43z32z14

�
2h1;3

FðηÞ; ð3Þ

where zij ¼ zi − zj and η ¼ ðz21z43=z42z31Þ is the har-
monic ratio (0 < η < 1). For the Ising model, the function
FðηÞ is the solution of the differential equation [48]

½2ηð1− ηÞ�2F000− 3ð1− ηþ η2ÞF0 þ 3ð2η− 1ÞF¼ 0: ð4Þ

Equation (4) has three linearly independent solutions
F1;1ðηÞ, F1;3ðηÞ, and F1;5ðηÞ. The behavior for small η
of each of the functions Fr;s is of the form ηhr;s and the
exponent hr;s coincides with the scaling dimension of the
field ϕr;s that is produced in the operator product algebra
[1]: ϕ1;3×ϕ1;3¼ϕ1;1þϕ1;3þϕ1;5. Although there is not a
general procedure to solve the differential equation (4), we
can proceed as follows. First, we observe that function
F1;1ðηÞ has to coincide apart from the prefactor in Eq. (3)
with the four point function of the boundary spin σ and
such a function [1] is the simple monodromy invariant [49]
polynomial 1 − ηþ η2. It is also easy to understand what
F1;1 should be in terms of connectivities. Since the four-
point function of the boundary spin operator can be fully
defined in the minimal Ising model, it has to correspond to
the unique partition function that requires only two colors
to be constructed, namely, hϕð2j1Þðw1Þϕð1j2Þðw2Þϕð2j1Þðw3Þ×
ϕð1j2Þðw4Þi. This, in turn, is proportional to the sum Pt ¼
Pð1234Þ þ Pð14Þð23Þ þ Pð12Þð34Þ of the three linearly indepen-
dent connectivities. Using the known solution F1;1ðηÞ
we can reduce the degree of the differential equation (4)
by substituting FðηÞ ¼ F1;1ðηÞ

R η
0 dη

0Gðη0Þ. The function
GðηÞ is finally obtained through a rational pull back of the
Gauss hypergeometric function [50]; see also Ref. [48].
One gets two linearly independent solutions G1;2 for GðηÞ,
related by the transformation η→ 1− η: G1ðηÞ ¼ fðηÞ and
G2ðηÞ ¼ fð1− ηÞ. The function fðηÞ is

fðηÞ ¼ pðηÞEðηÞ þ qðηÞKðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞηp ; ð5Þ

with KðηÞ and EðηÞ the elliptic integrals of the first and
second kind, respectively, and pðηÞ and qðηÞ rational
functions of η [48]. The behavior for small η finally fixes,

FIG. 2. On the left, schematic representation of allowed dual
FK clusters (dashed blue curves) in the Potts model when
boundary conditions that fix the values of the dual boundary
spins to 1,2,3, and 4 are chosen. On the right, the Kac table,
obtained from the scaling dimension hr;s in Eq. (2) for Q ¼ 2

corresponding to the Ising model.
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up to an overall constant, F1;5ðηÞ ¼ F1;1ðηÞ
R η
0 dη

0fðη0Þ.
The third linear independent solution to Eq. (4) can be
chosen to be F1;5ð1 − ηÞ, which is actually a linear
combination [51] of all the F’s. Coming back to the
connectivities we observe that in the limit w1 → w2,
Pð14Þð23Þ contains configurations where two FK clusters
are separated by a dual line. These configurations are
realized by the insertion of the operator ϕ1;5 [52] at the
boundary and it was argued in Ref. [41] that in this case
logarithmic singularities should arise. We conjecture then
the following identification for the universal probability
ratio, which we denote with RðηÞ

RðηÞ ¼ Pð14Þð23ÞðηÞ
PtðηÞ

¼ A
Z

η

0

dη0fðη0Þ; ð6Þ

where the constant A ¼ ½R 1
0 dηfðηÞ�−1 is chosen to ensure

that Rð1Þ ¼ 1. The conjecture (6) can be easily tested on an
arbitrary geometry by applying a conformal mapping z0ðzÞ.
Since all the dimensionful parameters in Eq. (3) cancel
when computing Eq. (6), one has only to express η in the
new coordinates z0. Finally, we observe that denoting
1 − η ¼ ε one obtains [48] the small ε expansion for the
ratio in Eq. (6):

R¼ 1− ε1=2½a0 þ a1εþ a2ε2ð1þ b log εÞ þOðε3Þ�: ð7Þ
The logarithmic singularity arises from the mixing of the
level two descendants of ϕ1;3 with the field ϕ1;5 that have at
c ¼ 1=2 the same conformal dimension h1;5 ¼ 5=2. This is
the first example where a logarithmic singularity is explic-
itly calculated in the context of the critical Ising model. The
logarithmic behavior in Eq. (7) has a completely different
origin with respect to the well-known logarithmic diver-
gence of the specific heat at the critical temperature [39,40].
It shows that the phenomenon of mixing of scaling fields
and nondiagonalizability of the conformal dilation operator
could arise potentially at any rational value of the central
charge—a circumstance that was already recognized in
Refs. [41,42] and Refs. [38,53–55], but for which in the
Ising model no explicit result was available. In
Refs. [56,57], a possible source of logarithmic behavior
was also identified but appeared to be ruled out by
numerical data.
Numerical results.—Simulations have been carried out

on the Ising model at the exactly known critical temperature
on a triangular lattice in triangles of sides of lengths L ¼ 9,
17, 33, 65, 129, and 257 with open boundary conditions
collecting a number of samples up 1010. The random
number generator employed is given in Ref. [58]. We
implemented the efficient Swendsen-Wang algorithm [59]
that provides direct access to the FK clusters [44].
In order to use our results for the upper half plane (6) in

the triangle geometry a Schwarz-Christoffel is in order.
Given a z in H and a z0 belonging to the interior of an
equilateral triangle with vertices ð−1; 1; i ffiffiffi

3
p Þ the mapping

reads z0 ¼ ½2zΓð5
6
Þ2F1ð12 ; 23 ; 32 ; z2Þ=

ffiffiffi
π

p
Γð1

3
Þ�, 2F1 being the

Gauss hypergeometric function. In the simulations the three
points z01, z

0
3, and z

0
4 have been fixed in the midpoint of each

side, while the point z02 takes any position on the boundary
between z01 and z03. Since the problem is symmetric under
rotation of 2π=3 and 4π=3 around the center of the triangle,
also the configurations obtained with these rotations have
been measured to enhance the statistics. An example of the
simulated system together with a realization of FK clusters
is presented in Fig. 3. The ratios Pð12Þð34Þ=Pt; Pð14Þð23Þ=Pt;
Pð1234Þ=Pt, because of the symmetry Pð12Þð34ÞðηÞ ¼
Pð14Þð23Þð1 − ηÞ are not independent and only one function
suffices to specify all of them, that is RðηÞ as defined in
Eq. (6). In Fig. 4 we show the simulation results together
with the CFT prediction for R for the four largest lattices.
In the inset of Fig. 4 we show the deviations from the
exact result.

FIG. 3. (Left) Triangular lattice (L ¼ 9) with the four points z01,
z02, z

0
3, and z04 highlighted. (Right) A realization of FK clusters

contributing to the probability Pð12Þð34Þ.
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FIG. 4. Universal ratio RðηÞ (6) for the lattice sizes L ¼ 33, 65,
129, and 257 denoted by triangles, diamonds, squares, and
circles, respectively. Errors are smaller than the symbol size.
The CFT prediction is plotted with the continuous line. In the
inset deviations of MC data from the theory are shown with the
same symbols used in the main figure, lines are just guides to
the eyes.
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Conclusion.—In this Letter we have calculated the four
point connectivities of FK clusters in the critical Ising
model and show that they can display logarithmic branch
cuts. This is a first explicit example where such a type of
singularities are determined exactly for a theory that also
has a nontrivial sector belonging to the series of unitary
minimal models. Previous exact CFT studies focused on
percolation and SAW [30,36–38]. Our findings are fully
corroborated by numerical simulations, showing excellent
agreement. Similar structures, expected in many other
important two-dimensional models including critical per-
colation, fully deserve the attention of future investigations.
It would be also of clear interest to analyze whether
logarithmic singularities could be found in higher dimen-
sions [60,61], for instance, in the three dimensional critical
Ising model.
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