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In this Letter, we detail an orthogonalization procedure that allows for the quantification of the amount
of coherence present in an arbitrary superposition of coherent states. The present construction is based on
the quantum coherence resource theory introduced by Baumgratz, Cramer, and Plenio and the coherence
resource monotone that we identify is found to characterize the nonclassicality traditionally analyzed via
the Glauber-Sudarshan P distribution. This suggests that identical quantum resources underlie both
quantum coherence in the discrete finite dimensional case and the nonclassicality of quantum light. We
show that our construction belongs to a family of resource monotones within the framework of a resource
theory of linear optics, thus establishing deeper connections between the class of incoherent operations in
the finite dimensional regime and linear optical operations in the continuous variable regime.
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Introduction.—The differences between the classical
physical theories and quantum theories are known to be
useful for a variety of informational tasks [1]. As such, the
identification and quantification of nonclassical quantum
properties such as quantum entanglement [2], nonlocality
[3], and quantum discord [4] remain intense areas of
research today [5–9].
A recent development in the quantum resources arena is

the resource theory of quantum coherence by Baumgratz,
Cramer, and Plenio [10], which draws its primary inspiration
from the study of entanglement [11]. The theory necessarily
assumes some natural, orthonormal basis set fjiig, where
states jii are typically considered to be “classical.” Since
then, variations of such resource theories have also been
explored [12]. Recent applications span a diverse range of
topics, such as quantum correlations [13,14], interferometric
experiments [15], error correction [16], and quantum esti-
mation [17]. See Ref. [18] for an overview. There are also
attempts to quantify the coherence in infinite dimensional
systems, mainly focusing on the Fock basis fjnig, implicitly
assuming that Fock diagonal states are the free classical
resource in the infinite dimensional regime [19,20].
This approach is, however, in diametric opposition to the

traditional notions of classical light based on the Glauber-
Sudarshan P representation of the state of the electromag-
netic field. Indeed, Fock states are decidedly nonclassical
[21,22]. The most general notion of classical light has
already been extensively studied since the 1960s [23–26],
and it is well established that the quantum states of light
that most closely resemble classical light fields, both in
photon statistics and dynamics, are the so-called coherent
states [27]. Unfortunately, the set of coherent states is
overcomplete; in particular, the coherent states are not
mutually orthonormal, and therefore do not permit the
direct application of the resource theoretical approach
outlined in Ref. [10].

In a newer development, a generalization of the theory of
coherence called the resource theory of superposition was
also proposed [28]. This approach allows one to quantify the
amount of superposition among states with support within
the vector space spanned by some finite set of normalized,
linearly independent, but not necessarily orthogonal, vectors.
However, the set of coherent states not only spans an infinite
dimensional Hilbert space, their overcompleteness also
implies they are not linearly independent. As such, a direct
application of this theory does not bridge the gap between
coherence or superposition and nonclassical P representa-
tions. This remains true even if one were to consider a
countably infinite but linearly independent set of states, such
as the von Neumann lattice [29], as there are always coherent
states outside of this subset that exist as a superposition.
In this Letter, we propose an approach which demon-

strates that the quantum resource identified by Baumgratz,
Cramer, and Plenio [10] is essentially the same as the
notion of nonclassicality identified by Glauber [27]. This
nonclassical resource is also closely related to what we
refer to as a resource theory of linear optics. We note that
linear optical operations form a strict subset of the most
general classicality preserving operations, which were
previously considered for a resource theory in the con-
tinuous variable regime [30]. For readability, all technical
proofs will be deferred to the Supplemental Material [31].
Preliminaries.—We will adopt the axiomatic approach

for coherence measures as shown in Ref. [10]. The essential
ingredients are as follows.
For a fixed basis fjiig, the set of incoherent states I

is the set of quantum states with diagonal density
matrices with respect to this basis. Given this, we say
that C is a measure of quantum coherence if it satisfies
following properties: (C1) CðρÞ ≥ 0 for any quantum state ρ
and equality holds if and only if ρ ∈ I . (C2a) The measure
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is nonincreasing under incoherent completely positive
and trace preserving maps (ICPTP) Φ, i.e., CðρÞ ≥
C½ΦðρÞ�. (C2b) Monotonicity for average coherence under
selective outcomes of ICPTP: CðρÞ ≥ P

npnCðρnÞ, where
ρn ¼ KnρK

†
n=pn and pn ¼ Tr½KnρK

†
n� for all Kn withP

nKnK
†
n ¼ 1 and KnIK

†
n⊆I . (C3) Convexity, i.e.,

λCðρÞ þ ð1 − λÞCðσÞ ≥ C½λρþ ð1 − λÞσ�, for any density
matrix ρ and σ with 0 ≤ λ ≤ 1.
The set of coherent states will be denoted by fjαig. (For

an overview, see, for instance, Ref. [34]). It is known that
every quantum state of light ρ permits a representation that
is diagonal with respect to coherent states, i.e.,

ρ ¼
Z

d2αPðαÞjαihαj;

where the coefficient PðαÞ is called the Glauber-Sudarshan
P distribution [35], or just the P distribution. The P
distribution always sums to 1 but may display negativities,
in which case it is considered nonclassical.
Finally, we also reference linear optical operations. We

specifically take this term to refer to the set of passive unitary
optical operations that can be performed using basic build-
ing blocks of beam splitters, phase shifters, half and quarter
wave plates as described in Ref [36] supplemented with
displacement operations, defined by DðαÞ ≔ eðαa†−α�aÞ. In
contrast, the most general linear canonical transformation
includes operations such as squeezing operations, that can
give rise to highly nonclassical light. In our context, the
defining property of such a linear optical operation is that if
the input quantum state is given by pure, classical light,
which can bewritten in the form jα⃗i ¼ jα1i…jαki [37], then
the output state is also pure and classical, i.e., ifU is a unitary
linear optical operation, then Ujα⃗i ¼ jβ⃗i ¼ jβ1i…jβki.
Example for pure states.—Consider some orthogonal

basis fjiigwith i ¼ 1;…; N in someN dimensional Hilbert
space and some arbitrary quantum state jψi ¼ P

icijii.
Without any loss in generality, we assume that the
coefficients are in decreasing order, so jcij ≥ jciþ1j.
Define a CNOT type operation performing the operation
Uijiij0i ¼ jiijii.
Suppose we perform a series of such CNOT type

operations starting from the basis state with the largest
overlap with jψi, so U ¼ UN…U1. Applying this unitary,
the final result is the state Ujψi ¼ P

icijiijii. We note that
the coherence of Ujψi in the basis fjiijiig is the same as
the coherence of jψi in the basis fjiig.
We now define a similar series of CNOT type operations

as before, with the exception that the control states are
drawn from the nonorthonormal set fjαig. The resulting
state will have the form Ujψij0i ¼ P

ic
0
ijα0iijβ0ii, where the

set of states fjα0iijβ0iig will be orthonormal so long as
hβijβji ¼ δij. We note that this orthogonality condition can
always be strictly enforced by an encoding across multiple
spatial or polarization modes, but for notational simplicity,

we will instead use some set of sufficiently well separated
coherent states within a single mode, fjβiig, which can be
chosen to be arbitrarily close to orthonormal.
Following the previous argument, define jψ ii through

the recursion relation jψ ii ¼ jψ i−1i − jαi−1ihαi−1jψ i−1i,
where the coherent state jαii satisfies hαijψ ii ¼
maxα0 hα0jψ ii and the initial state jψ1i ¼ jψi is some given
pure quantum state of interest.
Given some finite series of vectors fjαiig where

i ¼ 1;…; N, we may consider the CNOT type unitary
performing Uαi jαiij0i ¼ jαiijβii. From this, we construct
the unitary map as before: UGS ¼ UαN…Uα1 .
We will call UGS the Gram-Schmidt unitary, since it

performs an orthogonalization process. The end result is
some orthogonal subspace spanned by fjαiijβiig where
i ¼ 1;…; N. Within this N dimensional subspace, the
discrete finite dimensional formulation of coherence will
then apply.
Generalization to mixed states.—Wenow formally define

UGS, generalized for mixed states:
Definition 1.—(Gram-Schmidt unitary) For a given den-

sity matrix ρA, let ρð0ÞAB ¼ ρA ⊗ j0iBh0j. Define jαðiÞiA,
i ¼ 1; 2;…, to be a coherent state achieving the optimal

value TrðjαðiÞiAhαðiÞj⊗j0iBh0jρði−1ÞAB Þ¼maxαTrðjαiAhαj⊗
j0iBh0jρði−1ÞAB Þ, where ρðiÞAB ≔ UαðiÞρ

ði−1Þ
AB U†

αðiÞ
and UαðiÞ ≔1⊗

1þjαðiÞiAhαðiÞj⊗ ðjβiiBh0jþj0iBhβij− j0iBh0j− jβiiBhβijÞ
is a CNOT type unitary. We assume that fj0iB; jβiiBg forms a
set of mutually orthonormal vectors.
Let N ≥ 1 be some integer. Then the following unitary,

UðNÞ
GS ¼ UαðNÞ…Uαð1Þ ;

is called the Nth Gram-Schmidt unitary. Note that in

general, UðNÞ
GS depends on the state ρA.

In the case of degeneracy, where more than one coherent

state may achieve maxαTrðjαiAhαj ⊗ j0iBh0jρðiÞABÞ, the
choice of unitaries above is not necessarily unique.
To accommodate this, we will also define the set of all
possible choices of such unitaries SðNÞ. We can also
generalize to the case of multimode states by considering

jα⃗ðiÞiA⃗ ≔ jαðiÞ1 iA1
…jαðiÞk iAN

in place of jαðiÞiA, so that our
treatment here can be made as general as possible.
After the orthogonalization process, a pure state will have

the form UjψiAj0iB ¼ c0jϵiAj0iB þP
N
i¼1 cijαðiÞiAjβiiB,

where the set of states fjαðiÞiAjβiiBg will be orthogonal.
Thevector jϵiAj0iB represents the portion of thevector space
that is not orthogonalized by theNth Gram-Schmidt unitary,
which we can always remove by projecting onto the sub-
space spanned by fjαðiÞiAjβiiBg.We introduce the following
quantity:
Definition 2.—(N coherence) For some discrete finite

dimensional coherence measure C, we define the N
coherence Cα for a pure state jψiA to be
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CαðjψiA; NÞ ¼ inf
UðNÞ

GS ∈S
ðNÞ
C½ΦðNÞ

GS ðjψiAhψ jÞ�;

where ΦðNÞ
GS ðρAÞ ¼ ΠðNÞ

GS ½UðNÞ
GS ðρA ⊗ j0iBh0jÞUðNÞ†

GS �ΠðNÞ
GS =

TrfΠðNÞ
GS ½UðNÞ

GS ðρA ⊗ j0iBh0jÞUðNÞ†
GS �ΠðNÞ

GS g is called the

Nth Gram-Schmidt map. The projector ΠðNÞ
GS ≔P

N
i¼1 jαðiÞiAhαðiÞj ⊗ jβiiBhβij is the projection onto the

N dimensional subspace spanned by fjαðiÞiAjβiiBg where

the vectors fjαðiÞA ig and fjβiiBg are the same vectors
previously defined in Definition 1. More generally, for
any mixed quantum state ρA, we employ the following
definition:

CαðρA; NÞ ¼ inf
ðρAE;UGSÞ∈ðE;SðNÞÞ

C½ΦðNÞ
GS ðρAEÞ�;

where E ≔ fρAEjTrEρAE ¼ ρAg is the set of extensions of
ρA. The coherence C is measured with respect to the set

of orthogonal vectors fjα⃗ðiÞiAEjβiiBg specified by UðNÞ
GS .

In general, we allow the coherence measure C to be any
finite dimensional coherence measure satisfying the axioms
listed in Ref. [10], with only one additional requirement. The
coherence measure C should be asymptotically continuous
in the sense that if some state ρ has infinitesimally small
coherence, then it is infinitesimally close to some incoherent
stateσ. That is, ifwehave some sequenceof statesρn such that
limn→∞CðρnÞ ¼ 0 then for every ϵ > 0, there is some nmax
such that for every n > nmax, there exists some incoherent
state σn such that 1

2
∥ρn − σn∥tr < ϵ. This is satisfied, for

instance, by both coherence measures introduced in
Ref. [10]. This is because both the l1 norm [38] and the
relative entropy [39] are lower bounded by the trace norm.
Next, we define the ϵ smoothed version of the above

quantity so as to consider states in the immediate vicinity
of the state of interest.
Definition 3.—(ϵ-smoothed N coherence) The ϵ-

smoothed N coherence for some ϵ > 0 is the quantity

CαðρA; N; ϵÞ ≔ inf
ρ0A∈BðρA;ϵÞ

Cαðρ0A; NÞ;

where BðρA; ϵÞ ¼ fρ0Aj 12 ∥ρ0A − ρA∥tr ≤ ϵg is the ϵ ball
centred at ρA with respect to the trace norm.
Finally, the main figure of merit that we consider is the

following:
Definition 4.—(α coherence) The α coherence is the

limiting value of the ϵ smoothed N coherence:

CαðρAÞ ≔ lim
ϵ→0

lim
N→∞

CαðρA; N; ϵÞ:

In Definition 4, we have combined the finite dimensional
formulation of coherence with that of nonclassical systems
of light. The α coherence may therefore be interpreted as
the limiting case of the coherence identified by Baumgratz,
Cramer, and Plenio [10], optimized over state extensions
and all degenerate cases, if any. Coherence effects are
typically signs of nonclassicality if an appropriate basis is

chosen but it remains to be shown what kind of non-
classicality the above quantity measures.
Main results.—It can be shown that, for a given state ρA, a

vanishing value of the α coherence is equivalent to the
existence of a Glauber-Sudarshan P distribution (referred
to hereafter simply as the P distribution) for ρA which is a
probability density on the complex plane. A nonzero value of
the α coherence is, therefore, an indicator of nonclassicality.
Theorem 1: The α coherence CαðρAÞ ¼ 0 iff ρA is a

classical state.
In quantum optics, nonclassicality is usually manifest in

the measurement statistics of moments of the quadrature or
number operators. Specifically, a classical P distribution
constrains these correlation functions to satisfy linear or
nonlinear inequalities, depending on the nonclassical features
of interest [22,40]. Theorem1 extends the general operational
content of the fact that a quantum state associated with a P
distribution that is a bona fide probability distribution fails to
exhibit nonclassical characteristics.
We now consider a possible resource theory where the

“free” operations are linear optical operations including
displacement operations. We also allow additional free
resources in the form of classical ancillas, where classi-
cality means classical P distributions.
Definition 5.—(Linear optical maps) A quantum map

ΦL is called a linear optical map or operation if

ΦLðρAÞ ¼ TrEðULρA ⊗ σEU
†
LÞ;

where UL is some linear optical unitary operation. σE is
some classical, possibly multimode ancillary system.
A set of Kraus operators fKig satisfying

P
iK

†
i Ki ¼ 1

with corresponding POVM elements K†
i Ki representing

classical measurement outcomes i is called a linear optical
measurement if there exists linear optical unitary UL and
classical ancilla σEE0 and some set of orthogonal vectors
fjα0iiE0 g such that

TrEðULρA ⊗ σEE0U†
LÞ ¼

X

i

piρ
i
A ⊗ jα0iiE0 hα0ij

for some density matrices ρiA, where piρ
i
A ≔ KiρAK

†
i and

pi ≔ TrðKiρAK
†
i Þ.

The following defines a possible resource theory of
linear optics.
Definition 6.—We call Q a nonclassicality measure if

the following conditions are satisfied: (1) QðρÞ ¼ 0 if and
only if ρ is classical. (2) (a) (Weak monotonicity) Q is
monotonically decreasing under linear optical operations
ΦL, i.e., QðρAÞ ≥ Q½ΦLðρAÞ�. (b) (Strong monotonicity)
Let fKig be a set of Kraus operators corresponding to a
linear optical measurement with outcomes i. Then Q is
nonincreasing when averaged over measurement outcomes
i, i.e., QðρÞ ≥ P

ipiQðρiÞ, where pi ≔ TrðK†
i KiρÞ and

ρi ≔ ð1=piÞKiρK
†
i .(3) Q is convex, i.e., QðPipiρiÞ ≤P

ipiQðρiÞ.
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Based on the above definition, it can be demonstrated
that the α coherence is a linear optical monotone.
Theorem 2: The α coherence is a nonclassicality

measure.
Examples.—Here, we present some numerical plots

of the α coherence for some important classes of pure
states. For pure states in particular, the optimization is
much simpler as the only possible extensions are trivial,
thus sidestepping part of the optimization involved in
Definition 4. We will employ the relative entropy of
coherence [10] as our coherence measure.
In Fig 1 we compare the α coherence for the even and odd

cat states jαi � j − αi, Fock states jni, and squeezed states
SðξÞj0i with a real squeezing parameter ξ. For both Fock
states and squeezed states, the α coherence monotonically
increases with n and ξ, indicating strong nonclassicality. For
odd cat states, we see strong nonclassicality around α ≈ 0.
This is because in the limit α → 0þ, the odd cat approaches
the single photon state, an archetypical example of non-
classical light. In contrast, for even cat states, as α → 0þ, the
state approaches the vacuum, so the α coherence vanishes. It
is interesting to note that nonclassicality peaksmost strongly
in the region α ¼ 1. We interpret this as a signature of the
infinite dimensional nature of the underlying Hilbert space,
as the state tends towards a superposition of two orthogonal
states as α → ∞. We also note that when α → ∞, the α
coherence asymptotically approaches a constant value, in
contrast to ameasure of quantummacroscopicity [41]which
increases with the separation α.
Figure 2 is a numerical plot of the nonclassicality for a

given mean particle number. We see that the Fock states are
the most nonclassical states on a per particle basis over the
region considered, which is again not unexpected due to the
granular nature of this form of light.
Other possible measures.—Consider now a nonclassi-

cality measure based on the negative volume of the P
distribution. In the most general case, negativities in the P
distribution can come in the form of regular continuous

functions, which are directly accessible, or singularities.
Suppose we restrict ourselves to the case where the P
distribution is a regular continuous function. We define the
following:
Definition 7.—(Negativity) Let the P distribution of the

state ρ be given by pðαÞ, where pðαÞ is a regular function.
Let N ¼ fαjpðαÞ ≱ 0g, then the quantity

C−ðρÞ ¼ −
Z

N
d2αpðαÞ

is called the negativity of the P distribution.
The following result shows that both the α coherence

and the negativity of the P distribution belong to similar
resource theories, which further supports the argument that
the α coherence is closely related to negativities in the P
distribution.
Theorem 3: Suppose for some ρ, C−ðρÞ is finite

integrable. Then C− is a nonclassicality measure with
respect to the set of states with positive P distributions.
Still other possible measures of nonclassicality measures

can also be constructed. For instance, we can also consider
geometric measures of nonclassicality. Suppose we have
some distance measure Dðρ; σÞ over the Hilbert space that
is monotonically decreasing under quantum operations
over both its arguments. Then it is immediately clear that
the quantity infσ∈PþDðρ; σÞ, where the optimization is over
the set Pþ of all classical states, will satisfy at least the
weak monotonicity condition laid out in Definition 6.
Conclusion.—We described a general procedure that

allows us to quantify the superposition amongst any
complete set of quantum states, whether they are orthogo-
nal or not. The key insight here is that the scheme laid out
by Baumgratz, Cramer, and Plenio [10] can be generalized
via a reasonably motivated orthogonalization procedure.
This orthogonalization procedure is then applied to the
set of coherent states as a special case and the resulting
coherence measure, the α coherence, is shown to identify
incoherent states with nonclassical states in the sense of the
Glauber-Sudarshan P distribution. This demonstrates that
states with nonclassical P distributions are essentially the
limiting case of the same quantum resources identified in
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FIG. 1. α coherence for photonic states. (a) Even (solid line)
and odd (dotted line) cat states jαi � j − αi, (b) Fock states jni,
and (c) squeezed states SðξÞj0i are compared.

FIG. 2. α coherence plotted against mean photon numbers
hni ¼ ha†ai. Even (solid line) and odd (dotted line) cat states
jαi � j − αi, Fock states (circular points) jni, and squeezed states
(dashed-dotted line) SðξÞj0i are compared.
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Ref. [10], when the incoherent basis is chosen as the set of
coherent states.
The α coherence also belongs to a class of resource

theoretic nonclassicality measures that we refer to as a linear
optical resource theory. This strongly implies that linear
optical monotones are appropriate measures of the non-
classicality of light. The results also suggest deeper con-
nections between incoherent operations and linear optical
elements. For instance, it is known that a parallel feature of
nonclassical light and coherence is that both quantum
resources may be faithfully converted to entanglement
[14,42–45], where the relevant operation is the beam splitter
for the optical case, and a CNOT gate for coherence. Our
results make it clear why this is so. Nonclassical light may in
fact be interpreted as a form of coherence, where linear
optical operations (beam splitter) are the continuous variable
counterparts of the finite dimensional incoherent operations
(CNOT). We hope that this relationship will open up
potentially interesting new lines of investigation.
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