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Controlled quantum systems such as ultracold atoms can provide powerful platforms to study
nonequilibrium dynamics of closed many-body quantum systems, especially since a complete theoretical
description is generally challenging. In this Letter, we present a detailed study of the rich out-of-
equilibrium dynamics of an adjustable number N of uncorrelated condensates after connecting them in a
ring-shaped optical trap. We observe the formation of long-lived supercurrents and confirm the scaling of
their winding number with N in agreement with the geodesic rule. Moreover, we provide insight into the
microscopic mechanism that underlies the smoothening of the phase profile.
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Thermalization of closed out-of-equilibrium many-body
systems lies at the heart of statistical physics. Because of the
recent progress in the preparation of well-controlled isolated
quantum systems, this question can now be revisited in a
quantum context [1]. Whereas most systems are expected to
reach thermal equilibrium, nontrivial situations can occur in
integrable systems [2], in the presence of disorder [3] or
due to the formation of long-lived topological defects [4,5].
Out-of-equilibrium dynamics are also central to the study
of dynamical crossings of phase transitions. Indeed, the
divergence of the relaxation time at the critical point for a
second-order phase transition entails that the system cannot
follow adiabatically the external perturbation. The relaxation
dynamics can be used in that case to determine the critical
exponents of the phase transition [5].

A rich situation occurs when N condensates, charac-
terized by independent initial phase factors, are coupled
together. Let us consider, for instance, the case where the
condensates are placed along a ring and connections are
suddenly established between neighboring condensates.
One expects that, after some transient dynamics, stochastic
metastable supercurrents are formed. This ring geometry
was put forward by Zurek in a seminal paper [6] drawing a
parallel between laboratory experiments with liquid helium
and classes of early universe theories. More recently this
gedankenexperiment inspired experiments with supercon-
ducting loops [7-9] and cold atoms [10]. A key ingredient
of Zurek’s study is the relation between the winding
number of the supercurrent and the number of initial
condensates N according to the geodesic rule. In essence,
it enables a computation of the winding number based on
the minimization of the kinetic energy of the system.

In this Letter we investigate the relaxation dynamics of
up to N = 12 uncorrelated Bose-Einstein condensates
(BECs) after merging them in a ring-shaped optical trap.
We measure the statistical distribution of metastable super-
currents and relate their emergence to the evolution of the
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FIG. 1. Experimental protocol. (a) Illustration of the exper-
imental sequence. An annular trap is partitioned into N seg-
ments of equal length. Uncorrelated BECs are prepared in these
segments with random phase differences é¢;, i =1,...,N,
between adjacent condensates. After merging into a single
annular condensate, supercurrents with winding number v € Z
are formed. (b) In situ density distribution in the ring trap for
N =9 at different times ¢ during the merging. The outer ring
has a mean radius of 19.5 ym and a width of 5 ym. The inner
ring serves as a phase reference for the detection as described
in the main text. It has a mean radius of 13 ym and a width of
4 ym. Each image is an average over 5 or 6 experimental
realizations. (c) Matter-wave interference after a 2D time of
flight (TOF) of 6 ms. The chirality of the pattern and the
number of spiral arms reveal the winding number v of the
supercurrent in the outer ring.
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phase defects generated at the boundaries of the BECs. The
experimental protocol is depicted in Fig. 1(a). Initially the
condensates are characterized by random phase differences
o¢; (i=1,...,N) between condensates i and i + 1, that
can lead to a net phase accumulation around the ring after
merging [Fig. 1(b)]. Because of the single-valuedness of
the wave function, the phase winding around the ring has
to be equal to 2zv, with winding number v € Z. This
corresponds to the formation of supercurrents with quan-
tized velocities, which we detect through matter-wave
interference [Fig. I(c)] with an additional ring-shaped
condensate with uniform phase [10,11]. Our results show
that the magnitude of the supercurrent scales in quantitative
agreement with the geodesic rule. This extends earlier
works on the merging of two [12] and three [13] con-
densates in a harmonic trap and on the dynamics of a large
number of condensates in a two-dimensional (2D) optical
lattice [14]. Complementary results have been obtained
with a large number of Josephson junctions, where the
scaling with N appears to be modified compared to the
one studied in our work [7]. Additionally we explore
the underlying dynamics by merging pairs of neighboring
condensates. First, we study it globally by monitoring the
evolution of the winding-number distribution as a function
of time. Second, we detect local phase defects and study
their dynamics in a time-resolved manner. The observed
relaxation time scales are compatible with the evolution of
solitonlike phase defects.

The experiment started by loading a cold cloud of
1.4(2) x 10° ¥Rb atoms in the |F = 1, m; = 0) state into
a pancake-type dipole trap with tight harmonic confinement
along the vertical direction, w, = 27 x 1.58(1) kHz, and
negligible confinement in the xy-plane [15,16]. The in-
plane trap was shaped using a digital micromirror device
(DMD) in direct imaging with an optical resolution of
~1 pm to create a uniform double-ring trap as illustrated in
Fig. 1(b). All experimental studies were performed in the
outer ring, which was partitioned into several segments,
while the inner ring served as a uniform phase reference for
detection [10,11]. The distance between the segments as
well as between the two rings was 2.5(2) um, defined as
the full width at half maximum of the density dip in the
measured in sifu distributions [Fig. 1(b)]. This separation
is large enough to enable the formation of uncorrelated
condensates [16].

After 2 s evaporative cooling, we reached a final temper-
ature of 7' < 20 nK, thereby entering the quasi-2D regime
kpT < hw,, with kp the Boltzmann constant and 7 the
reduced Planck constant. The upper temperature limit
of 20 nK is the smallest detectable temperature using our
calibration method. This corresponds to 2D phase-space
densities D = A2n > 80 deeply in the superfluid regime
[18]; here n = 36(4)/um? is the 2D atomic density, A; =
hy/2x/(mkyT) the thermal wavelength and m the mass of
one atom.

Subsequently, we merged the BECs in the outer ring
within 10 ms by decreasing the width of the potential barriers
[Fig. 1(b)] using our dynamically configurable DMD. The
velocity at which the barriers were closed was chosen small
compared to the speed of sound ¢ in order to prevent the
formation of shock waves and high-energy excitations

[19,20]. For our experimental parameters cq = /ngop/m =~

1.4(1) mm/s, where g,p =gsp/(V/2xl.) is the 2D interac-
tion parameter, gsp, = 47h’a/m, a = 5.3 nm the scattering

length, and I, = \/A/(mw.) =0.27 ym the harmonic oscil-
lator length.

After a typical relaxation time of 0.5 s, we detected the
phase winding after 2D time of flight by releasing the in-
plane confinement abruptly while keeping the vertical one.
We recorded the resulting interference pattern after 6 ms
using standard absorption imaging along the z direction
[Fig. 1(c)]. The chirality of the pattern and the number of
spiral arms are a direct measure of the winding number v of
the supercurrent that was formed in the outer ring [10,11].
In an independent calibration measurement we found that
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FIG. 2. Formation of supercurrents as a function of the number
of BECs N. (a) Probability distributions p(v) for N = 1, 3 and 9
obtained from M = 202, 238, and 388 measurements, respec-
tively. The insets display in situ images before the merging
averaged over 4—6 realizations. (b) Measured rms width v, of
the probability distributions as a function of N. Each data point
consists of M > 200 independent measurements. The corre-
sponding mean values v are displayed in the inset. The solid line
is the predicted scaling given in Eq. (1). All error bars display the
combined uncertainty from the experimental determination of the
winding number and the statistical error due to a finite number of
measurements M, which was evaluated using a bootstrapping
approach.
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the probability of creating a supercurrent in the inner ring
was <0.6% [16].

Each repetition of the experiment results in a different set
of random phase differences d¢; that leads to the formation
of a supercurrent with winding number v =YY | 6¢,;/(2x),
where —7 < 6¢p; < n. The interval for the phase differences
O¢; is chosen according to the geodesic rule, which
expresses the fact that the system tends to minimize the
absolute value of the relative phase between neighboring
condensates due to energetic reasons [21,22]. By repeating
the measurement M times we extracted the corresponding
probability distributions p(v) as illustrated in Fig. 2(a). We
observe an increase of the probability for nonzero winding
numbers with N resulting in a broadening of the distribu-
tion. The measured center 7 = ), p(v)v and rms width
Urms = VM/(M = 1), p(v)(v—1)? of the individual
distributions are depicted in Fig. 2(b).

Ideally the smallest number of domains that allows for
the formation of topological defects is three. In this case
the probabilities py,(v) can be computed following simple
arguments [13,23]. There are three possible cases: if
Oy + 6¢p > &, the total sum of all phase differences
has to amount to 2z, if 6¢; + d¢p, < —n the total sum
amounts to —2z and for all other cases it vanishes.
The resulting probabilities are py,(+1) = pu(=1) = 1/8,
which is compatible with our experimental results p(+1) =
0.15(2) and p(—1) =0.13(2) displayed in Fig. 2(a). In
general the probability distribution is determined by the
Euler-Frobenius distribution [24] and we obtain

™) {0, if N <3 W
VrmsN = 1 : 1
m\/ﬁ, 1fNZ3

The distribution is symmetric around v = 0, with o = 0,
which is in agreement with our experimental data obtained
for small N [Fig. 2(b)]. For N > 9 there seems to be a small
systematic shift to positive values.

Our experimental results shown in Fig. 2(b) are in
agreement with the predicted scaling for N > 3. There is
a discrepancy for N = 1, where we measure a nonzero
probability for the formation of supercurrents p(v # 0) =
1.5(8)%. We attribute this to phase fluctuations of the
condensate due to finite temperature effects, which are
enhanced for larger systems. We tested that reducing the
radius of the condensate by one-third significantly reduces
the probability for nonzero winding numbers. For N > 3
thermal fluctuations are not expected to have a large
influence because the length of the condensates is smaller.
Regarding the case of N =2 we found that this particular
configuration was very sensitive to the alignment of our
trap. Small trap inhomogeneities had a significant impact
on the obtained distributions.

For the largest number of condensates N =12 we
measure slightly smaller values than expected, most
likely due to an increased sensitivity to experimental

imperfections and overlapping time scales. If the merging
of the BECs is performed too slowly, there are two main
effects that can lead to a reduction of v. If supercurrents
are already formed during the merging, their lifetime could
be reduced substantially due to the presence of residual
weak potential barriers [25]. At the same time an asyn-
chronous merging of the barriers could effectively reduce
the total number of initial condensates, if the phase of
neighboring condensates homogenizes before the merging
is complete. We have investigated this in more detail for
N =9 and found a significant reduction of the winding
numbers for merging times larger than 50 ms [16]. Both
effects are expected to be more critical for increasing N.
We typically wait 0.5 s after merging the condensates
before detecting the supercurrents. This waiting time is
short compared to the lifetime of the supercurrents in our
trap [16]. Indeed we observe no significant decay of the
supercurrents for waiting times on the order of 10 s. On the
other hand it is long enough to let the system relax to a
steady state with a smoothened phase profile, without a
significant number of defects in the interference pattern.
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FIG. 3. Relaxation dynamics from N to N /2 condensates, when

merging them in two successive steps. The in situ images above
the main graph illustrate the experimental sequence for N = 12.
Each image is an average over five individual measurements. The
main graph depicts our experimental results for N = 12 (black)
and N =6 (blue). Each data point consists of M > 200
measurements. The corresponding mean values o are shown in
the Supplemental Material [16]. The error bars depict the
uncertainty obtained from our finite number of measurements
M and the experimental uncertainty in the determination of the
winding numbers. The dashed lines indicate the measured values
shown in Fig. 2(b) and the shaded areas illustrate the correspond-
ing error bars. The solid lines are fits of exponential functions
fi(tyan) = Aje™™a/% + B, j = {6, 12}, to our data, where 7; is
the only free fit parameter and the other variables are determined
by the dashed lines extracted from Fig. 2(b).
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In order to gain a deeper insight into the underlying
relaxation dynamics, we performed two separate experi-
ments. First, we probed the evolution of the winding
number distribution by merging the BECs on the ring in
two successive steps. The sequence started by merging
pairs of neighboring condensates within 10 ms to reduce
the number of condensates by a factor of 2, then we let the
system relax for a variable time t,,; and subsequently
merged the remaining N/2 condensates in 10 ms into a
single annular BEC (Fig. 3). After an additional evolution
time of 0.5 s we detected the probability distributions p(v)
using the detection method explained above.

We identify two limiting cases for the data shown in
Fig. 3. If there is no additional wait time (¢,,,;; = 0) between
the two merging steps, the system has not enough time to
relax and the probability distribution resembles the one
discussed in Fig. 2, where all condensates were merged in a
single step. On the other hand, if t,,; is longer than the
relaxation time, the phase of neighboring condensates
homogenizes after the first step, so that we effectively
reduce the number of initial phase domains to N/2 and the
distribution approaches the one for N/2 initial BECs
merged in a single step. The measurements were performed
for N =12 and N = 6 and the dashed lines indicate the
limiting cases explained above. In order to extract a time
scale for the relaxation, we fit an exponential decay to
each of the two data sets. The amplitude and offset of
the fitting function are determined by the data points
displayed in Fig. 2(b). One can infer two different time
scales 7y, = 52(17) ms and 75 = 90(30) ms associated
with the relaxation dynamics, which most likely depend
on the spatial extent of the condensates, that differ by
almost a factor of 2 for the two data sets.

In a second set of measurements we focus on the
microscopic relaxation dynamics via the time-resolved
detection of local phase defects. We merged two conden-
sates and probed the evolution of the phase profile through
interference with a reference condensate [Fig. 4(a)]. The
length of each condensate is comparable to the length of
one segment studied in the relaxation dynamics discussed
above for N = 6. At short times (~1 ms), we observe a
phase defect in the center of the fringes, at the original
position of the potential barrier [Fig. 4(b)]. With increasing
time more phase defects appear and also start to propagate.
After 5 ms the number of defects decays and we find an
almost uniform distribution of their positions [26]. At long
times (>100 ms) almost all defects have disappeared in
agreement with the results displayed in Fig. 3.

We interpret the observed dynamics by the formation
of dark solitons at the position of the potential barrier,
whereby their shape depends on the random phase
differences between neighboring condensates [27-29].
Subsequently, the generated excitations propagate, interact
with each other, and eventually decay [29,30] to form a
steady state with a smoothened phase profile [Figs. 3(b)
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FIG. 4. Defect dynamics. (a) In situ density distribution of two
line-shaped condensates (first two images) with dimensions
50 um x 5 pum before and after the merging (averaged over four
individual realizations). The condensates are separated by 3 pm.
After merging the condensates in 9.5 ms the system evolves for a
variable time t,,;. Phase defects are detected by matter-wave
interference after TOF (image on the right) [16]. A typical image
for t,,;; = 0.7 ms is depicted on the right. The phase defect at
position y, is highlighted by the dashed line. (b) Position
distribution p(y,) of the phase defects as a function of the
waiting time f,,; evaluated from 200 individual measurements.
The histograms are normalized by the total number of measure-
ments. Phase dislocations are detected, if the phase difference
between neighboring pixels (corresponds to 1.16 um in the
atomic plane) is larger than 0.3z [16]. (c) Mean number of
phase defects N, as a function of time. The data were evaluated
using a threshold of 0.37z. The shaded area illustrates the
sensitivity due to this analysis (upper bound: 0.167; lower bound:
0.437).

and 3(c)]. Note, that the lifetime of solitonic excitations is
typically short for 3D systems but can be strongly enhanced
in low-dimensional geometries [31-33]. The propagation
speed of dark solitons depends on their depth and is at
maximum equal to the speed of sound cq, which is
compatible with the observed relaxation time scales. The
round-trip time at ¢ in the ring trap is about 90 ms for the
configuration studied in Fig. 2.

In conclusion, we have reported the first quantitative
study of the \/N scaling as predicted by the geodesic rule
and show that the underlying relaxation dynamics is
consistent with the formation of solitonlike defects.
Future experiments could benefit from phase-imprinting
techniques [27-29] to study the dynamics in a fully
deterministic manner. In particular, it would be interesting
to study the dynamics as a function of temperature and
geometry.
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