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By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian
system and an environment, we find that the complete information retrieval from the environment can
be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase.
The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which
many physical quantities such as the recurrence time and the distinguishability between quantum states
exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so
that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden
entangled partner protected by PT symmetry. Possible experimental situations are also discussed.
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Non-Hermitian systems with parity-time (PT) symmetry
have attracted growing interest over the past two decades
[1,2]. PT-symmetric systems have two phases: the unbro-
ken phase where the entire eigenspectrum is real, and the
broken phase where some eigenvalues form complex
conjugate pairs. Between the two phases lies an exceptional
point where an unconventional phase transition occurs [3].
Several unique properties of PT-symmetric systems have
been predicted and observed in classical systems where
gain and loss are balanced [4–20]. Since the first obser-
vations of PT-symmetry breaking and power oscillations in
optics [4–7], researchers have reported rich wave phenom-
ena unique to nonconservative systems such as unidirec-
tionality [10,11] and light transport in multifunctional
devices [12]. Related phenomena have been studied in
other subfields of physics, including electrical circuits
[16–18] and mechanical oscillators [19]. In the quantum
regime, various aspects of PT-symmetric systems have
been studied [21–36], such as Bose-Hubbard dimers [22],
entanglement [26–28], and critical phenomena [34]. In
particular, the first observation of the PT transition in
quantum systems has recently been reported in ultracold
atoms [36].
While loss is usually considered to be detrimental to the

coherence of a system [37–39], the unique phenomena and
useful applications in PT-symmetric classical systems illus-
trate the utility of balanced gain and loss. From this wisdom
in the classical regime, PT-symmetric quantum systems
are expected to show robustness against decoherence,
potentially leading to a long coherence time in quantum
information processing and engineering. However, informa-
tion-theoretic characterization of PT-symmetric systems has
hitherto been unexplored. In addition to the practical
importance, such characterization is needed for deeper
understanding of PT-symmetric systems as open quantum
systems.

The dynamics governed by a PT-symmetric non-
Hermitian Hamiltonian ĤPT is described by [40]

ρ̂ðtÞ ¼ e−iĤPT tρ̂ð0ÞeiĤ†
PTt

tr½e−iĤPTtρ̂ð0ÞeiĤ†
PT t�

: ð1Þ

Here we employ the usual Hilbert-Schmidt inner product
and consider the effective nonunitary dynamics of an open
quantum system described by ĤPT [41]. Recalling that the
nonunitary state reduction enables an observer to acquire
information about the system, one might well wonder if the
nonunitarity of the PT dynamics given by Eq. (1) could
lead to information flow between the system and the
environment. In this Letter, we show that this is indeed
the case, where the environment plays a role of an observer
that continuously monitors the system. In particular, we
demonstrate that the system in the PT-unbroken phase can
completely retrieve the information that has flowed into the
environment. We also find unique criticality of the infor-
mation flow around the PT-transition point, across which
the reversible information flow turns irreversible and vice
versa. Moreover, by embedding a PT-symmetric system
into a larger closed system, we identify the physical origin
behind the information retrieval as an entangled partner
hidden in the environment.
The information retrieval in PT-symmetric systems

suggests novel possibilities for better controlling the
behavior of quantum systems, in a way different from
the quantum Zeno effect [42–44] or the dynamical decou-
pling [45–47]. While the dynamical decoupling relies on
the time reversal by pulse injections, the information
retrieval discussed in this Letter is induced by a hidden
entangled partner protected by PT symmetry. The under-
lying physics is essentially distinct from that of
decoherence-free subspaces in which the unitary state
evolution is guaranteed by certain symmetry [48–54]; by

PRL 119, 190401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 NOVEMBER 2017

0031-9007=17=119(19)=190401(6) 190401-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.190401
https://doi.org/10.1103/PhysRevLett.119.190401
https://doi.org/10.1103/PhysRevLett.119.190401
https://doi.org/10.1103/PhysRevLett.119.190401


contrast, the PT dynamics is intrinsically nonunitary both
in the unbroken and broken phases.
Information flow.—We consider a general N-level quan-

tum system and characterize information flow to and from
it in terms of the trace distance between two quantum states
of the same system [55]:

D(ρ̂1ðtÞ; ρ̂2ðtÞ) ¼
1

2
trjρ̂1ðtÞ − ρ̂2ðtÞj; ð2Þ

where jÂj ≔
ffiffiffiffiffiffiffiffiffi
Â†Â

p
. The trace distance D measures

the distinguishability of two quantum states since
½1þDðρ̂1; ρ̂2Þ�=2 is the maximal probability of the two
states ρ̂1 and ρ̂2 being successfully distinguished [56,57].
The trace distance is invariant under unitary transformations;
i.e., no information leaks out from the system under unitary
evolution. In addition, the trace distance does not increase
under completely positive and trace-preserving (CPTP)
maps, i.e., DðEρ̂1; Eρ̂2Þ ≤ Dðρ̂1; ρ̂2Þ if E is a CPTP map
[58]. Thus, a monotonic decrease in the distinguishability
( _D < 0) signifies unidirectional information flow from the
system to the environment. In contrast, an increase in the
distinguishability ( _D > 0) signifies information backflow
from the environment to the system, implying the presence
of memory effects in the open quantum dynamics. In other
words, the dynamics involving a time interval with _D > 0 is
considered to be non-Markovian [59–67].
We note that the P divisibility of linear quantum dynami-

cal maps is equivalent to Markovianity of quantum processes
[63,65]. Although the PT dynamics given by Eq. (1) is
indeedP divisible [40], the divisibility cannot detect the non-
Markovianity of the PT dynamics due to nonlinearity.
Moreover, the PT dynamics in the PT-unbroken phase is
not contractive. However, the time evolution of D can still
serve as a measure to characterize the non-Markovianity in
the PT dynamics, since this measure directly quantifies
information flow between a system and its environment, and
hence detects the presence of memory effects even if the
dynamics is neither linear nor contractive, as demonstrated
below. While other measures are also possible [68], the trace
distance is suitable as a measure of information flow because
it distinguishes all different quantum states and depends only
on the system’s dynamics.
Information retrieval.—We consider generic behavior of

information flow between a PT-symmetric system and an
environment. First of all, the distinguishability DðtÞ ≔
D(ρ̂1ðtÞ; ρ̂2ðtÞ) oscillates and eventually returns to the
initial value in the PT-unbroken phase:

∃T > 0 such that DðTÞ ¼ Dð0Þ: ð3Þ
The proof of this result is given later. The recurrence of the
distinguishability implies the presence of a time interval
with _D > 0. Therefore, the system retrieves the information
that has flowed into the environment, and thus the system in
the PT-unbroken phase exhibits unique non-Markovian
behavior.

This non-Markovianity arises from the nonorthogonality
of eigenstates. To show this, we conduct the spectral
decomposition of the PT dynamics given by Eq. (1):

ρ̂ðtÞ ¼
P

mnρmne−iðEm−EnÞtjφmihφnjP
mnρmne−iðEm−EnÞthφnjφmi

; ð4Þ

where jφni is a right eigenstate of ĤPT with a real
eigenenergy En [40,69]. When the dynamics is unitary,
eigenstates are orthogonal to each other, and the normali-
zation factor, which is given by the denominator of Eq. (4),
is constant. In the PT dynamics, by contrast, the normali-
zation factor oscillates due to the nonorthogonality of
eigenstates, indicating the presence of continuous informa-
tion exchange between the system and the environment. In
this respect, power oscillations observed in various systems
[5,7,12,16,19,36] may be interpreted as evidence of infor-
mation backflow from the environment and a signature of
non-Markovianity in the PT-unbroken phase.
Universal criticality of information flow at the PT

transition.—Unconventional criticality of information flow
emerges around the PT-transition point, above which
information flow ceases to be reversible. The criticality
of information flow derives from the power-law behavior of
an eigenenergy Eþ iΓ of an eigenstate coalescing at the
exceptional point [70]:

Eþ iΓ ¼ EEP þ
X∞
i¼1

ciðΔλÞi=p; ð5Þ

where ci’s (i ¼ 1; 2;…) are system-specific coefficients,
Δλ is a real control parameter with Δλ < 0 (Δλ > 0)
corresponding to the PT-unbroken (PT-broken) phase,
and p ≥ 2 is the order of the exceptional point (i.e., the
number of coalescing states at the exceptional point). Note
that p is usually equal to 2, but p > 2 is also possible
[3,70–72].
As a consequence of Eq. (5), the recurrence time of the

distinguishability given by Eq. (3) exhibits the following
power-law behavior near the exceptional point [73]:

T ∼ jΔλj−1=p ðΔλ → 0−Þ: ð6Þ

It is remarkable that different PT-symmetric systems
having the same order p can exhibit the same critical
behavior given by Eq. (6). In this sense, the power-law
behavior of the recurrence time is a universal property
inherent in PT-symmetry breaking, where the order p of
the exceptional point characterizes the universality class.
In the PT-broken phase, the eigenstate with the largest

imaginary part dominates the dynamics for a sufficiently
long time. Thus, the distinguishability exponentially
decreases and never returns to the initial value [73,74]:

D ∼ e−t=τ ðt → ∞Þ; ð7Þ
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where τ > 0 is a relaxation time. Thus, information flows
unidirectionally from the system to the environment, and
the dynamics is asymptotically Markovian. Here, the
relaxation time τ also shows power-law behavior near
the exceptional point:

τ ∼ jΔλj−1=p ðΔλ → 0þÞ: ð8Þ
The critical exponent p is the same as that of the recurrence
time in the PT-unbroken phase.
At the exceptional point, both the recurrence time T in

the PT-unbroken phase and the relaxation time τ in the
PT-broken phase diverge, indicating the disappearance of a
characteristic time scale of the system. As a result, the
distinguishability D itself exhibits power-law behavior:

D ∼ t−δ ðt → ∞Þ: ð9Þ

Here the critical exponent is δ ¼ 2 if the eigenstate with the
second largest imaginary part in the PT-broken phase
coalesces with some other states at the exceptional point;
otherwise, δ ¼ p − 1 [73].
The above criticality is universal in the sense that it

depends only on the order of the exceptional point. The
obtained universal behavior accompanying diverging char-
acteristic scales of the system is reminiscent of the critical
phenomena in many-body systems [75,76]. It is a unique
feature of non-Hermitian systems that such critical behav-
ior can appear even in finite systems, in sharp contrast to
Hermitian systems where critical behavior emerges only in
the thermodynamic limit.
Embedding a PT-symmetric system into a larger

Hermitian system.—To establish clear physical understand-
ing of the information retrieval, we consider embedding a
PT-symmetric system of interest into a larger Hermitian
system. Here, our idea is motivated by the Naimark
extension for quantum measurement [77–79]: by adding
an ancilla (a measuring apparatus) and extending the
Hilbert space, any nonunitary dynamics can be understood
as a unitary dynamics of the entire system followed by
quantum measurement acting on the ancilla. Moreover, the
extension provides a rigorous proof of the information
retrieval given by Eq. (3).
To begin with, we consider a case of the PT-unbroken

phase. We examine pure states for the sake of simplicity,
but the discussion can straightforwardly be generalized to
mixed states. We introduce a Hermitian invertible operator
η̂ that characterizes the pseudo-Hermiticity, satisfying
η̂ĤPT ¼ Ĥ†

PT η̂ [80,81]. Note that the unbrokenness of
PT symmetry is equivalent to the existence of an invertible
linear operator Ô such that η̂ ¼ ÔÔ† [81]. We define a
parameter c ≔

P
N
i¼1 1=λi and an operator ζ̂ ≔ cη̂ − ÎN,

where λi’s (i ¼ 1; 2;…; N) are eigenvalues of η̂. If PT
symmetry is unbroken, η̂ is positive, so is ζ̂. An important
property that allows for the following extension is that

hψPT jη̂jψPTi is invariant under the PT dynamics
jψPTðtÞi ≔ e−iĤPTtjψ0i [80].
With the operator ζ̂ defined above, we construct a

PT-symmetric counterpart ζ̂1=2jψPTðtÞi, add a two-level
ancilla, and consider an entangled state jΨtotðtÞi in an
extended Hilbert space H2 ⊗ HPT :

jΨtotðtÞi ¼ j↑i ⊗ jψPTðtÞi þ j↓i ⊗ ðζ̂1=2jψPTðtÞiÞ: ð10Þ

The norm of such a state in the extended space is
hΨtotjΨtoti ¼ chψPT jη̂jψPTi and is conserved for an arbi-
trary PT dynamics. Therefore, the entire extended system is
Hermitian and closed. When a measurement is performed on
the ancilla and j↑i is postselected, we obtain jψPTðtÞi; when
j↓i is postselected, we obtain the PT-symmetric counterpart
ζ̂1=2jψPTðtÞi. While jψPTðtÞi obeys ĤPT , its counterpart
ζ̂1=2jψPTðtÞi obeys ζ̂1=2ĤPT ζ̂

−1=2. Our extension is minimal
since the ancilla as an environment has only two levels.
In particular, if ĤPT is a two-level system, ζ̂1=2 reduces to η̂

and ζ̂1=2ĤPT ζ̂
−1=2 ¼ Ĥ†

PT [82]. An experiment using such
an extension for a two-level system has recently been
realized with two entangled photons [83]. We emphasize
that our idea of the extension is different from that of
Ref. [82], which essentially relies on the property η̂þ η̂−1 ¼
ðtrη̂ÞÎ2 unique to a two-level system. Moreover, we consider
the extension in the PT-broken phase as shown below, while
Ref. [82] is restricted to the PT-unbroken phase.
The conservation of the norm of the extended state

jΨtotðtÞi implies the unitarity of its evolution Ûtot. We can
explicitly construct the Hermitian Hamiltonian Ĥtot in the
extended closed system that satisfies Ûtot ¼ e−iĤtott:
Ĥtot ¼ Î2 ⊗ ĤS þ ĤI , where ĤS acts locally on the
Hilbert space of the system HPT , and ĤI acts globally on
H2 ⊗ HPT as an interaction between the system and the
ancilla [73]. A crucial property of the extended Hamiltonian
is that the original system ĤPT is non-Hermitian if and only
if the characteristic interaction ĤI in the extended Hilbert
space is nonzero. Since the interaction is global, the
entanglement (or quantum mutual information) between
the system and the ancilla oscillates in time. The presence
of an entangled partner hidden in the environment is the
physical origin of the memory effect of PT-symmetric
systems: the information that has flowed into the environ-
ment is actually stored in the entanglement with the ancilla.
PT-symmetry breaking viewed from a larger closed

system.—The information retrieval can now be proven.
The extended Hermitian system with finite energy levels
returns back to the original state by the quantum recurrence
theorem [84,85], and the PT-symmetric system obtained by
the projection of an extended Hermitian system also returns
to the initial state. Here, we emphasize that it is a priori not
obvious whether such an extension with a finite-level ancilla
is possible, and this underlying finite dimensionality is a
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nontrivial universal feature of the PT-unbroken open quan-
tum systems. When PT symmetry is broken, in contrast, η̂ is
no longer Hermitian and the above extension breaks down.
In fact, the irreversibility of information flow in the
PT-broken phase leads to the impossibility of the extension
with a finite-dimensional ancilla, and an infinite-dimensional
ancilla is needed for embedding a PT-broken system into a
larger closed system. The recurrence theorem cannot be
applied to an infinite system, where the irreversible dynam-
ics should emerge [86].
The above extension of a PT-symmetric system gives

an insight into PT-symmetry breaking. PT-symmetry
breaking can occur in finite systems [2], although the
conventional theory of phase transitions tells us that sponta-
neous symmetry breaking occurs only in the thermodynamic
(infinite-dimensional) limit [75,76]. The above observation
implies a close relationship ofPT-symmetry breaking to this
conventional wisdom: in view of an extended Hermitian

system, an infinite-dimensional ancilla is required for thePT
transition to occur. The exceptional point is characterized as
a singular point at which the dimension of the companion
ancilla suddenly changes from finite to infinite.
It is also intriguing to revisit the criticality of information

flow at the exceptional point in an extended Hermitian
system. At the exceptional point, the norm of the
PT-symmetric counterpart diverges and the probability
of successful postselection of the system of interest
vanishes. Peculiar as it may appear, the vanishing proba-
bility at the exceptional point is reminiscent of the conven-
tional critical phenomena. Around the critical point, the
system undergoes larger fluctuations and hence the number
of measurements required for obtaining the true value
increases critically according to a power law.
Two-level system.—As the simplest example, we con-

sider a two-level system ĤPT ¼ sðσ̂x þ iaσ̂zÞ, where s ≥ 0
is an energy scale and a ≥ 0 represents the degree of non-
Hermiticity. This model has been realized in both classical
[7,14,15] and quantum [36,83] experiments. The eigene-
nergies are �s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, and thus the exceptional point is

located at a ¼ 1with the order p ¼ 2. Let j↑ðtÞi (j↓ðtÞi) be
the time-evolved state starting from the initial state j↑i
(j↓i). Then the distinguishability between them is calcu-
lated to be [73]

DðtÞ ¼
�
1þ

�
2asin2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
stÞ

1 − a2

�2�−1=2
: ð11Þ

We thus confirm that the obtained behavior is consistent
with the general theory discussed above [Figs. 1(a), 1(b)].
The presence of a hidden entangled partner behind the

information retrieval is understood through examination of
the entanglement entropy between the system and the
ancilla. Figure 1(c) represents the calculated entanglement
entropy, which clearly shows the oscillation of the entan-
glement synchronous with that of DðtÞ.
PT-symmetric optics.—The above discussion on

information flow can be applied to classical optical
systems [4,5]. Let us consider the propagation of beams
through a complex PT-symmetric potential VPTðxÞ, where
their electric-field envelopes obey the paraxial equation
of diffraction i∂zψðx; zÞ ¼ −½∂2

x þ VPTðxÞ�ψðx; zÞ. Then
the distinguishability between two electric-field enve-
lopes of the same system corresponds to DðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðjhψ ;ϕij2Þ=hψ ;ψihϕ;ϕi

p
, where the inner product

h·; ·i is defined by hψ ;ϕiðzÞ ≔ R
dxψ�ðx; zÞϕðx; zÞ.

The earlier discussions cannot directly be applied to
optical settings in a strict sense, since the discussions are
confined to finite-dimensional systems. However, we
expect that the universal behavior of information flow
continues to hold, and actually confirm it for a specific PT-
symmetric periodic potential VPTðxÞ ¼ V0½cos ð2πx=aÞþ
iλ sin ð2πx=aÞ�, where λ ≥ 0 measures the degree of non-
Hermiticity [5]. In the PT-unbroken phase (0 < λ < 1), the

D
is

tin
gu

is
ha

bi
lit

y

(c)

)b()a(

FIG. 1. Information flow in the PT-symmetric two-level
system. (a) Time evolution of the distinguishability DðtÞ in the
PT-unbroken phase (0 < a < 1). The distinguishability oscil-
lates with period T ¼ π=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
. The more closely we approach

the exceptional point (a ¼ 1), the longer the period becomes and
the larger the degree of the information retrieval grows. (b) Time
evolution of the distinguishability in the PT-broken phase
(a > 1). The distinguishability decays with a relaxation time
τ ¼ 1=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
Þ. Near the exceptional point, DðtÞ asymptoti-

cally behaves as D ∼ 1=t2. (c) Time evolution of the entangle-
ment entropy between the system and the ancilla with a ¼ 0.75.
The blue (green) solid curve represents the entanglement entropy
for the PT dynamics whose initial state is j↑i (j↓i), while the
dotted curve represents the distinguishability between them. The
entanglement clearly oscillates with period TE ¼ π=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ,

which is one-half of the period of DðtÞ.
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distinguishability oscillates in accordance with power
oscillations [5,7,12,16,19]; in the PT-broken phase
(λ > 1), it exponentially decays because of attenuation
and amplification. A remarkable feature shows up at the
exceptional point (λ ¼ 1) [87,88], where the distinguish-
ability asymptotically decays according to a power law
whose critical exponent is 1 or 2 for appropriately chosen
initial states [73].
Conclusion and outlook.—We have found that informa-

tion that has flowed into an environment can be retrieved
in a PT-symmetric system. This information retrieval
originates from a universal feature of an environment that
couples to a PT-symmetric system: it can be modeled by
a finite-dimensional (infinite-dimensional) ancilla in the
PT-unbroken (PT-broken) phase. Here the exceptional
point plays a role of the critical point around which many
physical quantities such as the recurrence time and the
distinguishability show power-law behavior. These find-
ings may find novel applications to quantum control.
It is also worthwhile to remark that the information

retrieval in a PT-symmetric system might be distinct from
the conventional non-Markovian behavior that has been
found in typical open quantum systems coupled to an
infinite bath [37–39,59–67]. While we expect that a broad
class of information measures can be used as a witness of
the non-Markovianity discussed in this Letter, it merits
further study to clarify their applicability in detail and
explore possible relevance to the known non-Markovian
behavior mentioned above.
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