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Dynamical properties of self-propelled particles obeying a bounded confidence rule are investigated by
means of kinetic theory and agent-based simulations. While memory effects are observed in disordered
systems, we show that they also occur in active matter systems. In particular, we find that the system
exhibits a giant Kovacs-like memory effect that is much larger than predicted by a generic linear theory.
Based on a separation of time scales we develop a nonlinear theory to explain this effect. We apply this
theory to driven granular gases and propose further applications to spin glasses.
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Collective behavior is a crucial aspect in the rapidly
growing field of active matter [1–4]. Active particles under
consideration can be animals like, e.g., insects, fish, or birds
[5], interacting robots [6], or microscopic objects like, e.g.,
bacteria [7], nanodimers [8], or Janus particles [9]. There is
shared belief, that, on a macroscopic level, active particle
systems can be described by a minimal set of hydrodynamic
fields [10]. There has been a large emphasis on deriving field
equations using different approaches [10–24]. For polar
particles with ferromagnetic alignment interactions the
description by Toner and Tu’s seminal equations [25,26]
is well established. Steady states of homogeneous solutions
have also been studied in detail [27–29]. However, memory
effects and dynamical properties of active matter far from its
steady state are largely unexplored.
To study nonstationary properties and possible history

dependencies we consider the following prototype situa-
tion: imagine a substance that, at time t ¼ 0, is in
equilibrium with a heat bath of temperature T1, and assume
that the temperature of the heat bath could be changed
instantaneously. Suppose we want to heat the substance to a
higher temperature Tf > T1. This could be achieved by
simply adjusting the heat bath to the desired final temper-
ature Tf. After a certain time, the substance will have
relaxed to equilibrium at Tf. Trying to speed up this
process one could initially set the heat bath to a higher
temperature T2 > Tf and switch the temperature of the heat
bath to Tf after a particular waiting time tw. Because the
amount of heat transferred to the system until time t ¼ tw is
increased by this protocol, we intuitively expect the system
to reach the desired temperature faster. This procedure is
related to a measuring protocol introduced by Kovacs et al.
[30,31]. In addition to the aforementioned steps they chose
the waiting time tw in a particular way. Considering an
observable Ψ, the waiting time was chosen such that at the
moment of temperature switching tw, the observable Ψ has
the same value that it has in equilibrium at temperature Tf.

Thus,ΨðtwÞ ¼ Ψðt → ∞Þ. In the case of Refs. [30,31],Ψ is
the volume and here it is the polar order parameter.
If the order parameter ΨðtÞ enslaved all other degrees

of freedom, the system would be in steady state already
at t ¼ tw and remain unchanged for the rest of the experi-
ment. If, however, at t ¼ tw there are additional degrees of
freedom that are not perfectly enslaved, they will couple to
the observable ΨðtÞ such that it first departs from and later
relaxes back towards its steady state value. This is known as
the Kovacs effect. In recent years the Kovacs temperature
protocol was applied, e.g., on glass systems [32–35], and
molecular liquids [36], but also on nonequilibrium systems
like driven granular gases [37–39]. In the latter case the role
of the temperature is replaced by a driving force.
In this Letter, we provide one particular example of a polar

active gas that exhibits a giant and long lastingKovacs effect.
To the best of our knowledge, the Kovacs effect has not yet
been reported for a system of active particles. The effect is
seen both in kinetic theory and in agent-based simulations,
quantitatively agreeing with each other. The presence of
such memory effects proves the existence and relevance of
hidden degrees of freedom that are crucial for the dynamics
of the system. Hence, one needs to be careful applying
Toner-Tu theories [13,25,26,40–42], where usually only
particle and momentum density are considered and all other
degrees of freedom are assumed to be enslaved. Such an
enslavement is clearly not occurring in the present system.
The Kovacs hump is so large that it contradicts a linear
theory on the Kovacs effect [43]. In fact, under the Kovacs
protocol, the system relaxes more slowly towards its final
steady state than it is doing by direct relaxation. This is
highly counterintuitive because the intermediate step should
bring the system closer to its final steady state.
As our central result we develop a nonlinear theory,

given by Eq. (7), that agrees quantitatively with and
explains the occurrence of the observed giant Kovacs
effect. The applicability of the theory exceeds the present
active matter system by far. We demonstrate this versatility
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of the theory by applying it to a driven granular gas and
propose further applications to disordered systems such as
spin glasses.
Here, we consider a two-dimensional Vicsek-like

model for self-propelled particles with bounded confi-
dence interactions, introduced in Ref. [27]. Bounded
confidence interactions have been studied first in the
context of opinion formation models [44,45] to mimic the
tendency to ignore others with opposite opinions.
Another swarming model of this type was studied in
Ref. [46]. One motivation for such interactions are
experiments on the collective motion of Bacillus subtilis
[47], where the investigators propose weaker interactions
between cells with increasing orientation difference. In
the Vicsek model, all particles move at constant speed in
individual directions. For a period of unit time they
evolve ballistically and afterwards they interact instanta-
neously. First, each particle adopts the mean direction of
motion of all particles that are no further away than some
interaction distance and that move in a direction that
differs by no more than the angle α from the particle’s
own direction. Note that in that way each particle
interacts at least with itself. Then, all particle directions
are disturbed by a random deviation ξ that is drawn for
each particle independently from the interval ½−η=2; η=2�.
The regular Vicsek model is recovered for α ¼ π.
However, in this case the Kovacs effect appears to be
negligibly small.
Considering only spatially homogeneous solutions,

one obtains a time evolution equation for the angular
distribution of the particle directions, which can be sim-
plified further by assuming molecular chaos and a low
particle density M. Employing the Fourier ansatz pðθÞ ¼P∞

k¼0 xk cosðkθÞ, the time evolution is given explicitly by a
hierarchy of equations [27,29]

xkðtþ 1Þ ¼ λk

�

Akxk þ
X∞

q¼1

xq½Bkqxjk−qj þ Ckqxkþq�
�

ð1Þ

with x0 ¼ ð1=2πÞ at all times. The coefficients λk, Ak, Bkq,
and Ckq can be found in the Supplemental Material [48].
For practical computations we have to truncate the Fourier
series after finitely many terms, setting xk ¼ 0 for k > n.
Here, we use n ¼ 100 or n ¼ 200. We denote the vector
of Fourier modes ðx1;…; xnÞ by x. As an observable we
consider the polar order parameter Ψ ≔ hcosðθÞi ¼ πx1. If
the system is perfectly ordered, all particles move in the
same direction and Ψ ¼ 1. If, in contrast, the directions of
all particles are completely random, we have Ψ ¼ 0.
Linearizing in the change of temperature, which corre-

sponds to a change in η in our case, the following relation
between the Kovacs hump ΨðtÞ and the relaxation curve
Ψ1f (obtained after switching from η1 to ηf) was derived in
Ref. [43] by means of a master-equation approach:

ΨðtÞ ¼ 1

1 − γ
Ψ1fðtÞ −

γ

1 − γ
Ψ1fðt − twÞ; ð2Þ

γ ¼ Ψ1fðtwÞ −Ψ�
ηf

Ψ1fð0Þ −Ψ�
ηf

: ð3Þ

By Ψ1fðtÞ we denote the order parameter when the system
is prepared at t ¼ 0 in the steady state of noise strength η1
and for t > 0 the noise strength is switched to ηf. The
steady state value of the order parameter at noise strength η
is denoted by Ψ�

η. As long as the relaxation curve Ψ1f is
monotonic, it follows from Eq. (3) that γ ∈ ð0; 1Þ, and
hence

ΨðtÞ
�
> Ψ1f; if Ψ1f is increasing;

< Ψ1f; if Ψ1f is decreasing:
ð4Þ

We evaluated the time evolution (1) numerically and
changed the noise strength according to the Kovacs pro-
tocol. The results are displayed in Fig. 1. In the same plot
we also present results of agent-based simulations, where
the positions zj and directions θj of the jth particle are
updated according to the ballistic motion,

zjðtþ 1Þ ¼ zjðtÞ þ v0

�
sinðθjÞ
cosðθjÞ

�

ð5Þ

with particle speed v0, and the collision rule

~θj ¼ Φj þ ξj;Φj ¼ arg

�X

l∈fjg
expðiθlÞ

�

; ð6Þ

FIG. 1. The relaxation curve Ψ1fðtÞ (dash-dotted line) and the
Kovacs hump ΨðtÞ (solid red line) obtained from the kinetic
theory (1) are in good agreement with agent-based simulations
(light green squares and light red circles, respectively). The linear
theory (2) (dashed black line) describes the Kovacs effect well
for short tw ¼ 8. System parameters are α ¼ 0.47π, M ¼ 0.2,
η1 ¼ 0.3797, η2 ¼ 0.4553, ηf ¼ 0.3940 [49]. The lower part
shows the noise strength according to the Kovacs protocol.
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where ~θj denotes the postcollisional direction of the jth
particle and ξj are independent random variables that are
drawn uniformly from the interval ½−η=2; η=2�. The set fjg
contains the indices of all particles that interact with the jth
particle according to the bounded confidence rule. There
is good agreement between agent-based simulations and
kinetic theory (1). We clearly find that the Kovacs effect is
present in this system. In Fig. 1 where α ¼ 0.47π and the
waiting time tw ¼ 8 is small, the linear theory (2) agrees
well with the data.
However, for a different parameter set, in particular, a

smaller α ¼ 0.35π, and for the inverse Kovacs protocol
with η1 > ηf > η2, displayed in Fig. 2, we recognize that
the Kovacs hump ΨðtÞ and the relaxation curve Ψ1fðtÞ
intersect. That means the relaxation towards the final steady
state under the Kovacs protocol is slower than the direct
relaxation from η1 to ηf. This surprising result clearly
violates condition (4), which is a consequence of the linear
theory (2). The Kovacs hump is giant compared to the
predictions of the linear theory (dashed black line in Fig. 2).
In the Supplemental Material [48] we rederive Eq. (2) for
time discrete dynamical systems. In contrast to Ref. [43], in
our derivation we do not need to assume that the steady
state is Boltzmann distributed. We argue that this linearized
theory is only applicable if the waiting time is short. Thus,
in the present case, the linear theory is not sufficient to
describe the system, and nonlinear effects are crucial.
Under assumptions specified below, we develop a non-

linear theory finding that the vector of Fourier modes xðtÞ
obtained from the Kovacs protocol for t ≥ tw is related to
both relaxation curves x1f (switch from η1 to ηf) and x2f

(switch from η2 to ηf) by the following central result

xðtÞ ¼ x2fðt − twÞ þ x1fðt − t̂Þ − x2fðt − t̂Þ: ð7Þ

We derive this equation not by linearizing the time
evolution (1) itself but only the change of the system’s
state after tw. Furthermore, we do not linearize in the
change of the noise strength but we take a strong nonlinear
dependence of the relaxation speed on the noise strength
into account, see the Supplemental Material [48] for details.
The first vector component of Eq. (7) yields the corre-
sponding relation for the order parameter Ψ ¼ πx1 but
Eq. (7) is more general, yielding a relation for all Fourier
modes. The time shift t̂ in Eq. (7) depends on the change of
the relaxation speed when η is switched (see Ref. [48] for
details). The right-hand side of Eq. (7) is displayed as the
blue dotted line in Fig. 2. It coincides well with the Kovacs
hump. We discuss a plot of the second Fourier mode of the
same process in Ref. [48].
With Eq. (7) we can understand why the Kovacs effect is

so large. We find that the derivative of ΨðtÞ at t ¼ tw is
given by Ψ0

2fð0Þ þ Ψ0
1fðtw − t̂Þ −Ψ0

2fðtw − t̂Þ. Here, the
relaxation curve Ψ2f is decaying very fast in the beginning
and both relaxation curves are decaying much more slowly
at later times, cf. Fig. 2. Since jΨ0

1fðtÞj and jΨ0
2fðtÞj are of

comparable size, the term Ψ0
2fð0Þ is dominant. That means

a fast relaxation of Ψ2f at t ¼ 0 leads to a fast and therefore
strong change of ΨðtÞ in a short period after t ¼ tw. Thus,
whenever jΨ0

1fj ∼ jΨ0
2fj and Ψ2f is relaxing fast in the

beginning and much more slowly at later times we expect a
giant Kovacs effect.
The derivation of Eq. (7) is not system specific but it is

valid for a wide class of systems with the following two
properties. (i) In the relaxation dynamics there must be a
separation of time scales. In particular, there has to be one
mode that relaxes much more slowly than all others such
that at tw we can assume that all modes but one are already
completely relaxed. (ii) Furthermore, we need to assume
that this slow mode is not too sensitive to changes in η
and t such that the slowest relaxation mode for η2 is
approximately equal to the one at ηf.
For the present system these properties are numerically

verified inRef. [48]. They can also be understood intuitively.
Assume that a large population of particles moves into
direction θ ¼ 0. Then, they interact only with others that
move in a direction from the interval ½−α; α�. For α ¼ 0.35π
this interval is a little larger than 2π=3. Particles that have
directions outside this interval can not interact with the first
population. Therefore, it is possible that there is a second,
relatively large, population of particles that moves into the
opposite direction θ ¼ π. Then, the interaction intervals of
both populations are disjoint and all particles can interact
only with either the first or the second population. Particles
can be driven fromone population to the other only by noise.
For small noise strength this process is very slow, in
particular, because the interaction of particles within the

FIG. 2. The relaxation curves Ψ1fðtÞ, Ψ2fðtÞ (dash-dotted line)
and the Kovacs hump ΨðtÞ (solid red line) obtained from the
kinetic theory (1) are in good agreement with agent-based
simulations (light green squares and light red circles, respectively).
The linear theory (2) (dashed black line) fails to describe the
Kovacs hump whereas the nonlinear theory (7) with time shift
t̂ ¼ 332 (dotted blue line) agrees well. Parameters are α ¼ 0.35π,
M ¼ 0.2, tw ¼ 745, η1 ¼ 0.3354, η2 ¼ 0.2017, ηf ¼ 0.2884 [49].
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same population acts against this noise driven mechanism.
In contrast, the concentration of particles that belong to one
population due to aligning interactions is a much faster
process.
Thus, we identified a slow relaxation process in the

system: the noise driven reorientation of a group of particles
moving in the opposite direction from that of the majority.
This relaxation process is robust against moderate changes
in noise strength. Although the relaxation speed depends
strongly on the noise strength, the mechanism remains
the slowest dynamics as long as the noise is not too strong.
In the derivation of Eq. (7) we neither use that the
initial configuration is a steady state nor that the order
parameterΨðtwÞ ¼ Ψðt → ∞Þ (see Ref. [48]). Thus, Eq. (7)
is applicable to more general protocols than is the Kovacs
experiment and it might be valid for completely dif-
ferent systems with slow dynamics like, e.g., driven
granular gases, spin glasses, or other disordered systems
[50]. Furthermore, it might be applied to bounded con-
fidence opinion formation models with random influence,
as there is also a separation of time scales between the fast
formation of opinion clusters and their slow unification
towards consensus, see, e.g., Refs. [51–53]. The applicabil-
ity can be verified theoretically or experimentally by
measuring the Kovacs hump as well as the relaxation curves
Ψ1f and Ψ2f in different types of systems. The time shift t̂
might be obtained from theoretical calculations specific
to the system or simply from a fit of experimental or
simulation data.
For one specific granular gas we verify Eq. (7) explicitly.

In Refs. [37,39] the dynamics of a driven granular gas is
given by differential equations, Eqs. (6a) and (6b) in
Ref. [37]. Evaluating these equations numerically we
obtain the Kovacs hump ΨðtÞ as well as the relaxation
curves Ψ1fðtÞ and Ψ2fðtÞ, such that we can test the validity
of Eq. (7). In order to satisfy conditions (i) and (ii) we must
choose intermediate and final noise intensities close to each
other. In that way we assure that the waiting time tw is long
and that the slowest relaxation mode can be approximated
as constant. In Fig. 3 we show the anomalous Kovacs effect
for the driven granular gas of Refs. [37,39]. We find that
also the anomalous effect is described well by Eq. (7)
whereas the linear theory (2) fails completely. We can
understand why the Kovacs hump has the opposite sign by
investigating the derivative of Eq. (7). Here, jΨ0

1fj ≫ jΨ0
2fj

and hence the term Ψ0
1fðt − t̂Þ is dominant, causing the

anomalous effect.
For spin glasses, property (i) is not realistic but it can be

replaced by an alternative assumption. Consider the coher-
ence length l of a spin glass such that length scales smaller
than l are equilibrated and length scales larger than l are
frozen. The coherence length depends on the age of the
system. Turning it around, one finds that the age of the
system typically grows faster than exponentially with
the coherence length [32,54]. Translating this picture into

the framework of relaxing eigenmodes we assume the
following property: (i*) after the waiting time tw some
eigenmodes have relaxed completely, some others have not
relaxed at all, and there is a single mode that is partly
relaxed. If property (i*) holds instead of (i), the derivation
of Eq. (7) remains valid. The validity of Eq. (7) for spin
glasses could be verified in the future. However, steady
states might be difficult to prepare both in experiments and
in simulations. Fortunately, as argued above, Eq. (7) also
holds when the initial state is not a steady state. Thus, x1f

can be the relaxation curve from any (possibly nonsta-
tionary) state towards the steady state of ηf. Note, that the
measurement of the relaxation curve x2f requires the
preparation of the steady state belonging to η ¼ η2.
However, Eq. (7) yields still insights on the system even
if x2f can not be measured.
The time shift t̂ in Eq. (7) does not depend on the initial

configuration but only on the intermediate and final noise
strength and the waiting time tw. Hence, rewriting Eq. (7) as

xðtÞ − x1fðt − t̂Þ ¼ x2fðt − twÞ − x2fðt − t̂Þ ð8Þ
we find that the right-hand side is independent of the initial
configuration. Therefore, also the left-hand side must be
identical for different initial configurations. Even if steady
states cannot be prepared in an experimental or simulation
setup, the quantities on the left-hand side of Eq. (8) can still
be measured. Comparing them for different initial con-
figurations Eq. (8) can be verified and one could extract
information on the relaxation from one steady state to
another without preparing steady states.
In summary, we observe a giant, long lasting Kovacs

memory effect in a bounded confidence active matter system,
both in agent-based simulations and in kinetic theory. The
effect is unexpected as it contradicts a well-known linear

FIG. 3. Anomalous Kovacs effect for a driven granular gas.
The order parameter β is related to the granular temperature.
Displayed are relaxation curves (green dash-dotted lines) and the
Kovacs hump (red solid line). The Kovacs effect is very small and
shown in the inset in units of 10−2. The nonlinear theory (blue
dotted line), Eq. (7) with t̂ ¼ 0, describes the anomalous effect
well; the linear theory (black dashed line), Eq. (2), fails. Details
on the data are given in Ref. [48].
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theory. The giant memory effect proves the presence and
relevance of hidden degrees of freedom that are not incorpo-
rated in the Toner-Tu equations. We develop a quantitative
nonlinear theory that connects the Kovacs hump with two
relaxation curves with applicability beyond active matter. We
apply the nonlinear theory to a driven granular gas where it
succeeds to quantitatively describe the anomalous Kovacs
effect. We further propose experimental validations and
applications to spin glasses and other disordered systems,
as well as opinion formation models.

We thank A. Prados for detailed insights in driven
granular gases and for help improving the Letter. We thank
T. Voigtmann for valuable discussions.
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