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We show how the interference between superfluid spin currents can endow spin circuits with coherent logic
functionality. While the hydrodynamic aspects of the linear-response collective spin transport obviate
interference features, we focus on the nonlinear regime, where the critical supercurrent is sensitive to the
phase accumulated by the condensate in a loop geometry.We propose to control this phase by electrical gating
that tunes the spin-condensate coherence length. The nonlinear aspects of the spin superfluidity thus naturally
lend themselves to the construction of logic gates, uniquely exploiting the coherence of collective spin currents.
Vice versa, this functionality can be used to reveal the fundamental properties of spin superfluids.
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Introduction.—Spin currents in insulators open the pos-
sibility to transmit angular momentum with no associated
charge flow. This may ultimately eliminate Joule heating, a
prevalent dissipation mechanism in electronic and spintronic
devices based on charge currents. In magnetic insulators,
spin flows can be carried by magnons [1], the quanta of the
collective electron-spin excitations (spin waves). Spin cur-
rents generated by spin pumping [2], thermal fluctuations
[3], and electrical spin Hall injection [4] have been studied in
insulating ferrites and ferrimagnetic garnets like magnetic
Y3Fe5O12 and compensated Gd3Fe5O12. Inherently, insulat-
ing magnets exhibit low damping, enabling long-distance
propagation and thus efficient spin transport. The detection
of magnonic spin currents is typically achieved by means of
the inverse spin Hall effect [5] in an adjacent heavy-metal
layer. At present, the magnonic currents generated by spin
injection are conventionally diffusive in nature [4], exhibit-
ing incoherent propagation and an exponential decay with
increasing distance.
On the applications side, it was shown that magnon-based

logic operations can be realized in structures employing
yttrium iron garnet as a spin conduit. Incoherent magnons
have been used in Ref. [6], based on the addition of diffusive
spin-transport signals. To exploit the wave nature of mag-
nons, however, phase coherence has to be used to allow for
interference effects. In particular, complex functions like
majority gates, which conventionally require many semi-
conductor transistors, can be implemented easily using
phase-coherent magnons [7]. A coherent spin-wave bus
thus enables the implementation of fully functional super-
position-based magnonic logic, highlighting the potential of
this new information-processing approach. However, so far,
the necessary coherent magnons are typically generated
using microwave excitations with antennas [1], an approach
that does not scale well for applications. Parametrically
pumped magnon condensates [8] offer another route towards
coherent magnon dynamics [9] and the associated collective

spin currents [10], albeit requiring a steady energy supply to
overcome magnon damping.
To fully exploit the power of coherent spin transport in

practice, one needs to realize an on-chip dc generation of
superfluid spin flows. To this end, we study the interference
of multiple coherent collective spin currents in easy-plane
magnets [11]. We find that, while the hydrodynamic
aspects of the spin superflow preclude interference in the
linear response, efficient interference effects are found in
the nonlinear regime. Specifically, by exploiting a loop
geometry with two coherent spin-current branches, we
investigate the role of the interference in determining the
critical spin-superfluid transmission. Finally, we suggest to
use this result to implement logic functions.
Spin superfluidity in linear response.—In Ref. [12], a

collective spin current polarized along the z axis and
transmitted via the easy-xy-plane magnetic dynamics
[11] was proposed to be injected (detected) using the
(inverse) spin Hall effect [5]. The associated spin current,
js ¼ −A∂aφ [see Fig. 1(a), in the quasi-one-dimensional
(1D) geometry parametrized by a], mimics closely the mass
flow in a neutral superfluid [13], while the boundary
conditions js ¼ gðμs − ∂tφÞ, which reflect the injection
and detection of spin at the channel’s ends, are akin to the
Andreev reflection at the normal-metal–superconductor
interfaces [14]. φ here is the precession angle of the
magnetic order parameter in the easy plane, A is the
order-parameter stiffness, μs is the (spin-Hall-induced) spin
accumulation (polarized along the z axis) in the normal-
metal contacts, and we are assuming a linear response (with
only a small tilting of the order parameter out of the xy
plane). A crucial property of magnetic materials is Gilbert
damping, which, in this regime, sinks the angular momen-
tum at the rate of α∂tφ per unit length, governed by
dimensionless parameter α.
In a steady state established in response to the dc bias μs,

the frequency ∂tφ≡ ω must be uniform along the full
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length of the channel. Balancing the spin flow at the
boundaries (assuming the same spin conductances g) with
the net Gilbert-damping loss αωl, we obtain ω ¼ μs=
ð2þ αl=gÞ. In the loop geometry of Fig. 1(b), where
one may anticipate interference features, the steady-state
frequency is instead given by a similar expression as above,
only replacing l → ~l ¼ l1 þ l2, i.e., with the total circum-
ference of the circuit. Since the output spin current is given
by gω, it does not depend on the spin texture ∂aφ and the
associated stiffness A for low excitations.
As the input bias μs is increased and the order-parameter

winding ∂aφ is progressively stepped up in response,
however, it will develop inhomogeneously along the loop
branches. While it has no consequence for the transmitted
signal in the linear response, it will have an effect on the
Landau-like criterion for the superflow stability [11]. In
particular, we may anticipate a larger critical current to
correspond to a more uniform distribution of the flow
along the two branches in the geometry of Fig. 1(b). This
condition, in turn, is sensitive to the interference of the two
spin supercurrents, which can be controlled by the relative
lengths of the two branches, in units of the respective
coherence lengths. The nonlinear spin transport through the
multiply connected circuits can thus be controlled geomet-
rically as well as by gating relevant magnetic properties
along the lengths of the spin conduits. This will provide the
basis for logic functionality as detailed later.
We next study collective nonlinear dynamics and spin

transport in a (ferro)magnetic insulator, within the Landau-
Lifshitz-Gilbert (LLG) phenomenology [15] for bulk
dynamics and the spin Hall phenomenology [16] for the
spin injection and detection at the boundaries. After briefly
summarizing the pertinent equations, we will study the
stability of spin superflow in the geometries of Fig. 1, with

a focus on the loop geometry that will yield interference
and allow for logic functionality.
LLG theory of the nonlinear spin transport.—The

(nonlinear) LLG dynamics in the (insulating) bulk,

sð1þ αn×Þ _n ¼ δnF × nþ τ; ð1Þ

is constructed in terms of the free-energy functional

F½n� ¼
Z

d3r½Að∂inÞ2 þ Kn2z �=2: ð2Þ

τ here stands for any applied spin torques, s is the
equilibrium spin density, and K > 0 is the superfluidity-
stabilizing [11] easy-plane anisotropy. The order parameter
undergoes directional dynamics constrained by jnj≡ 1. We
can rewrite Eq. (1) as a hydrodynamic continuity equation:

sð1þ αn×Þ _n ¼ −∂iji þ Knzz × nþ τ; ð3Þ

where ji ≡ −An × ∂in is recognized to be the spin flow in
the ith direction.
For the boundary conditions, attaching a heavy metal

with the interface area S and normal k results in the spin-
injection current density (i.e., torque per unit area)

js ¼ jðSHÞs − jðpumpÞ
s ¼ ϑn × ðk × jÞ × n − gn × _n →

δτ
δS

;

ð4Þ

where j is the electrical current density applied to the metal.
ϑ≡ ðℏ=2eÞ tan θSH, in terms of the effective spin Hall angle
θSH, and g≡ ðℏ=4πÞg↑↓, in terms of the effective spin-
mixing conductance (per unit area) g↑↓, both including the
interplays of the spin Hall and spin-pumping injection,
reflection, and backflow of electron spins in the metal. We
are keeping here only the leading-order in spin-orbit
interaction effects [16]. We will henceforth set k → x
and j → jy, so that k × j → jz. The same metal can be
used for detecting magnetic dynamics, according to the
Onsager-reciprocal spin-motive force [16]:

ϵ ¼ ϑðn × _nÞ × k ¼ ϑjðpumpÞ
s × k=g; ð5Þ

which, in a closed circuit, would induce the current density
j ¼ σϵ=d, where σ is the metal film’s conductivity and d its
thickness.
Let us parametrize nðθ;φÞ by the polar angle θ and the

azimuthal angle φ. Let ðn; θ;φÞ be the local (right-handed)
coordinate system, such that

∂in ¼ θ∂iθ þ φ∂iφ sin θ: ð6Þ

It then follows that

(a)

(b)

FIG. 1. Hydrodynamic spin transport in linear response.
(a) Single channel of length l collectively transmitting spin
current ∝ ∂aφ, which is injected on the right at the rate ∝ μs.
Spin pumping ∝ ∂tφ ejects spin currents at both ends, and along
the length of the conduits Gilbert damping α leads to an
attenuation. (b) Superposition of two similar spin flows in a
loop geometry composed of two branches of lengths l1ð2Þ. φ here
is the azimuthal angle of easy-plane magnetic dynamics.
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∂iðn× ∂inÞ ¼ −θ
∂ið∂iφsin2θÞ

sinθ
þφ

�
∂2
i θ−

1

2
ð∂iφÞ2 sin2θ

�
:

ð7Þ
Projecting the LLG equation (1) in the bulk on θ and φ, we
respectively get

sð_θ − α _φ sin θÞ ¼ −A
∂ið∂iφ sin2 θÞ

sin θ
ð8Þ

and

sð _φsinθþα_θÞ¼A

�
∂2
i θ−

ð∂iφÞ2
2

sin2θ

�
þK

2
sin2θ: ð9Þ

Switching to the natural units for the problem, we measure
∂t in units of K=s and ∂i in units of

ffiffiffiffiffiffiffiffiffiffi
K=A

p
(the magnetic

speed of sound then becomes c ¼ ffiffiffiffiffiffiffi
KA

p
=s → 1). The bulk

equations of motion then become dimensionless as s, A,
and K drop out.
Critical superflow in a single conduit.—In a 1D super-

fluid channel of length l, whose position is parametrized by
a, the bulk equations (8) and (9) reduce to

_θ − α _φ sin θ ¼ −
∂að∂aφsin2θÞ

sin θ
; ð10aÞ

_φ sin θ þ α_θ ¼ ∂2
aθ þ

1 − ð∂aφÞ2
2

sin 2θ: ð10bÞ

Placing the normal metals at the two ends (a ¼ 0 and l), the
boundary conditions projected onto θ result in

a ¼ 0; l∶ ð∓ ∂aφþ g _φ − jÞ sin θ ¼ 0; ð11Þ
and for φ,

a ¼ 0; l∶ ∂aθ ∓ g_θ ¼ 0: ð12Þ
Here, the dimensionless constants g≡ ðg=sÞ ffiffiffiffiffiffiffiffiffiffi

K=A
p

and
j≡ ϑj=

ffiffiffiffiffiffiffi
AK

p
(which may be different at the two ends)

parametrize the strengths of the spin pumping and the spin
Hall torques at the interfaces. They both may include
the geometric enhancement factor S=Sm (where Sm is the
magnetic wire cross section), which we are omitting for
simplicity. However, we note that, analogous to a hydro-
dynamic description using a tapered geometry, potentially
one can enhance the spin-current density by this geomet-
rical factor. We are supposing that the metal contacts are on
top of the magnet with the same normal k (on the bottom,
the relative sign in front of j would flip, as in our original
Ref. [12]). Let us note that θ≡ 0 is a good solution (albeit
possibly unstable) of Eqs. (10)–(12), as all the spin torques
and currents vanish in this trivial case.
In a stable dynamic steady state, we can set _θða; tÞ≡ 0

and _φða; tÞ≡ ω (const). Defining v≡ −∂aφ (correspond-
ing to the velocity of the superfluid condensate), we rewrite
the above equations as

−αωsin2θ ¼ ∂aðvsin2θÞ; ð13aÞ
ω sin θ ¼ ½∂2

aθ þ ð1 − v2Þ sin θ cos θ�; ð13bÞ
with the boundary conditions (supposing θ ≠ 0)

a ¼ 0; l∶ � vþ gω − j ¼ 0; ∂aθ ¼ 0: ð14Þ
Note that v → 1 corresponds to the Landau criterion,
according to which a static spiral becomes energetically
unstable [11]. We can see this from the energy density in
Eq. (2), which is ∝ ð1 − v2Þn2z , in our units: At v > 1, the
uniform out-of-plane state nz ≡ 1 has the lowest energy.
Let us start by looking for solutions with a constant

θ ≠ 0. From Eqs. (13), we then get

−αω ¼ ∂av and ω ¼ ð1 − v2Þ cos θ: ð15Þ
It is clear that a constant-θ solution implies also a constant
v, which requires that either α or ω vanish. ω → 0,
furthermore, necessitates j≡ jð0Þ ¼ −jðlÞ. In this case,
v ¼ j carries the spin-Hall-injected spin current between
the contacts without any dissipation. θ ¼ π=2 up to j → 1,
at which point there is a first-order phase transition to
θ ¼ 0, for j > 1. Setting α ¼ 0 would generally result in
constant-θ solutions. Supposing g entering Eqs. (14) is the
same at both ends,

v¼1−p
2

j; ω¼1þp
2g

j; and cosθ¼ ω

1−v2
; ð16Þ

where jð0Þ ¼ j and jðlÞ ¼ pj, with p parametrizing the
injection polarization. In the antisymmetric case, p ¼ −1,
we reproduce the above finite-v, zero-ω solution (since in
the absence of dynamics, the Gilbert damping is incon-
sequential). In the symmetric case, p ¼ 1, a finite-θ
solution (with finite ω and zero v) exists up to the critical
bias jc ¼ g. For an arbitrary p, the critical bias jc is reached
when ω ¼ 1 − v2. We can see that jc ≤ 2=ð1 − pÞ and
2g=ð1þ pÞ, corresponding, respectively, to v;ω ≤ 1.
When p ≠ −1, the steady-state solutions are dynamic

and the critical angle θ → 0 is reached in a second-order
fashion (cf. Fig. 2). The transmitted (z-polarized) spin-
current density, in this case,

js ¼ svð1 − cos2 θÞ; ð17Þ
is maximized at some intermediate bias, between 0 and jc
[i.e., the critical point where θ vanishes; note that both v
and θ here depend on j according to Eqs. (16)]. This means
that one can maximize the injected spin-current density by
choosing the appropriate injector current. In the special
case when p ¼ 0 (corresponding to the injection at a ¼ 0),
the transmitted spin current

js ¼ sjð1 − cos2 θÞ=2 ð18Þ
will result in the (y-oriented) motive force (5) ϵ ¼ ϑjs=g.
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Nonlinear superflow interference.—We now turn to the
interference of spin superflows along two channels con-
nected at the ends. Representing them as a circle, we start
with the simplest case of two metal contacts: an injector at
a ¼ 0 and a detector at a ¼ l0, with the full loop length
given by l. Barring superfluid phase slips [17], we restrict θ
to the interval of ð0; πÞ. In other words, the spin texture is
not allowed to sweep over the south or north poles. This
allows us to define the topological invariant

2πn ¼
Z

l

0

dav; ð19Þ

corresponding to the azimuthal-angle winding number
n ∈ Z of the order-parameter texture placed on the circle.
We are looking for steady-state solutions of the same

bulk Eq. (13), adjusting the boundary conditions as

a ¼ 0; l0∶ vjþ− þ gω − j ¼ 0; ∂aθjþ− ¼ 0: ð20Þ
See Fig. 3 for a schematic explaining the geometry and
notation. In the absence of damping, α → 0, and for
subcritical driving, let us look for the superfluid velocities
that are uniform in the two sections, given by v1 and v2,
while the polar angle θ is the same throughout. Setting
jð0Þ ¼ j and jðl0Þ ¼ 0,

v2 − v1 ¼ gω − j and v1 − v2 ¼ gω; ð21Þ
subject to the topological constraint (19): v1l0 þv2ðl− l0Þ¼
2πn. We thus find

v1 − v2 ¼
j
2

and
v1 þ v2

2
¼ j

2

�
1

2
−
l0

l

�
þ 2πn

l
: ð22Þ

The frequencyω ¼ j=2g (which governs the detected motive
force) is l0 independent. Note that the frequency ω ¼
ð1 − v2Þ cos θ can generally not be the same for a common
angle θ in the two sections. This means that the above steady-
state solution would be valid only in the linear-response

regime. In the general nonlinear case, θðaÞ must develop
inhomogeneities, with the exception of the special scenarios
that yield jv1j ¼ jv2j according to Eq. (22).
We could initialize a uniform state with n ¼ 0, in the

absence of a bias, followed by ramping up the current j.
If l0 ≠ l=2, the two branches will transmit the input
current asymmetrically, so that a critical current would
be reached in one of them before the other. The texture
can then undergo a phase slip to a different winding
number n, depending on the ratio l0=l, with a possibility
to reach a steady state with a higher critical current. The
symmetrical (i.e., nonfrustrated) case l0 ¼ l=2 corresponds
to the highest critical current jc, when n ¼ 0, so that
v1 ¼ −v2 ¼ j=4≡ v. As before, jc is found from
ω ¼ j=2g ¼ 1 − v2. If g ≫ 1, in particular, the critical
current is obtained from v → 1 and is thus twice the result
for a single 1D channel (with p set to 0). In order to
maintain the symmetrical superfluid flow v1 ¼ −v2,
allowing us to reach the highest critical current, we obtain
the following condition from Eqs. (22):

jc
2

�
l0

l
−
1

2

�
¼ 2πn

l
: ð23Þ

We thus obtain the maximal superflow at l0 ¼ l=2 (and
n ¼ 0) as well as at the positional increments of

Δl0 ¼ 4πn=jc: ð24Þ
Note that, restoring the physical units, jc ∼ ξ−1, where ξ≡ffiffiffiffiffiffiffiffiffiffi
A=K

p
is the magnetic healing length. The size of the ring

thus has to be larger than but comparable to this length scale,
for the optimal geometric characteristics and sensitivity.
If the current is applied symmetrically at both contacts,

jð0Þ ¼ jðl0Þ ¼ j, we find, according to Eqs. (20), v1 ¼ v2 ¼
2πn=l≡ v and ω ¼ j=g. The common polar angle and

FIG. 3. Schematic of the circular configuration to exhibit
interference of two (nonlinear) spin superfluids. The critical
current is maximized at special relative angles ϕ between the
injector and detector leads, which are determined by ξ=R
according to Eq. (24).

FIG. 2. Spin current (17), which governs the detected motive
force ϵ ¼ ϑjs=g, in the case of p ¼ 0 and choosing g ¼ 2. Note
that the picture would simply flip for the opposite bias, j < 0.
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stability considerations result from ω ¼ ð1 − v2Þ cos θ, as in
the single-conduit case, yielding an n-dependent critical
current. In particular, since n ¼ 0 corresponds to the highest
current, the n ¼ 0 configuration can be initialized by driving
a symmetric bias that is subcritical to this state only.
Discussion.—Our study focuses on the critical spin current

in multiply connected geometries (cf. Fig. 3). As the natural
unit of lengthgoverning the superfluid phasewinding is set by
the coherence length ξ [cf. Eq. (24)], we may expect the
strongest interference effects on the critical flow for system
sizes larger than ξ. The relative phase between two superfluid
branches may be tuned, in practice, by locally varying A
and/or K (and thus ξ). This can be achieved, for instance, by
electrostatic gating [18] or a local strain [19]. We can thus
control the transmission of a large input signal by lowering or
raising the critical current. This can be used to accomplish the
AND and NOT logic gates, which together provide a complete
set for implementing any logic function. Exploring spin
dynamics in the supercritical regime, particularly with an
eye on tunable steady-state self-oscillations, may open an
interesting avenue of research. On another front, the (here-
tofore disregarded) thermal phase slips [17] may offer an
alternative route for exploiting the interplay of nonlinearities
and interference of spin superfluids.
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