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Quantum Hall states can be characterized by their chiral edge modes. Upon softening the edge potential,
the edge has long been known to undergo spontaneous reconstruction driven by charging effects. In this
Letter we demonstrate a qualitatively distinct phenomenon driven by exchange effects, in which the
ordering of the edge modes at ν ¼ 3 switches abruptly as the edge potential is made softer, while the
ordering in the bulk remains intact. We demonstrate that this phenomenon is robust, and has many
verifiable experimental signatures in transport.
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Shortly after the discovery of the integer quantum Hall
effect (QHE) it was realized that the edges of an incom-
pressible electron gas play a crucial role in transport [1]. In
a quantum Hall state, the bulk has a charge gap. Near a
sharp edge, gapless chiral modes [2] carry the current
between the contacts, consistent with the topologically
protected transport observables of the QHE.
In the early 1990s, it was realized that both integer [3–5]

and fractional [6,7] edges reconstruct as the slope of
the edge confining potential VedgeðyÞ is made smoother.
Reconstruction is the modification of the position and/or the
number and nature of the edge modes [3–9]. Subsequently,
various manifestations of edge reconstruction have been
observed in the QHE regime [10–14] and theoretically
studied in many QHE states [15–20] and in time reversal
invariant topological insulators [21].
Edge reconstruction is driven by charge effects [22], as

seen by the work of Dempsey et al. [4] who studied the
unpolarized filling factor ν ¼ 2. For a sharp edge, the
n ¼ ð0↑Þ and the n ¼ ð0↓Þ single-particle levels cross
the chemical potential μ at the same location, with a sharp
change in electron density there. As VedgeðyÞ is made
smoother, the ↑ and ↓ crossing points spontaneously move
away from each other, making the density variation
smoother at the edge.
In this work, we focus on the edge of a ν ¼ 3 quantum

Hall state and uncover edge phenomena driven by spin
exchange rather than charge effects [22]. The bulk remains
inert at the parameters we consider, and only the edge
shows a phase transition. We find that, depending on
parameters, the order of the two inner or the two outer
edge channels switches as VedgeðyÞ becomes smoother. No
charge reconstruction is observed in the regime where spin
mode switching occurs. Our analysis indicates that the
phase transitions are first order. In designed geometries
with controlled edge steepness and quantum point contacts
(QPCs), a host of phenomena can serve as “smoking gun”
tests of spin mode switching. These include a change in the

nature of the spin transport through a single QPC system
with and without spin mode switching, and a qualitative
change in the way disorder affects transport following a
spin mode switching transition.
To set the stage for our model, we define the cyclotron

energy ℏωc¼ðℏeB=mbÞ (mb is the band mass), the inter-
action scale Ec ¼ ℏωc

~Ec ¼ ðe2=4πϵlÞ where ϵ includes
the dielectric constant of the medium, and l ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

, the
magnetic length. We will work at tiny Zeeman coupling
Ez ≪ Ec.
In the Landau gauge eAx ¼ −ðy=l2Þ, eAy ¼ 0, the

single-particle wave functions of the nth Landau level
(LL) in a system with periodic boundary conditions in x can
be written as [23]

Φnkðx; yÞ ¼
eikxe−

ðy−kl2Þ2
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where k ¼ 2πm=Lx determines the position of the guiding
center along the y axis. The Hamiltonian of the system
H ¼ Hb þHe-bg can be split into an electronic bulk part
Hb and the electron-background interaction He-bg respon-
sible for the confining potential Vedge at the edge. The bulk
Hamiltonian is

Hb ¼ ℏωc

X
nks

nc†nkscnks þ
1

2LxLy

X
q⃗

vðqÞ∶ρeðq⃗Þρeð−q⃗Þ∶;

ð2Þ
where the electron density operator ρeðx; yÞ ¼P

sΨ
†
sðx; yÞΨsðx; yÞ, Ψsðx; yÞ ¼

P
n;kΦnkðx; yÞcnks, with

cnks being canonical fermion operators, and vðqÞ and
ρeðq⃗Þ are the Fourier transforms of the interaction
vðr⃗ − r⃗ 0Þ and ρeðx; yÞ. The possible translation-invariant
ground states of the ν ¼ 3 bulk are jψ1i ¼ j0↑; 0↓; 1↑i
(partially polarized) and jψ2i ¼ j0↑; 1↑; 2↑i (fully polar-
ized), where we only write the occupied spin-labeled LLs.
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As ~Ec increases there is a bulk first-order transition [24–26]
driven by exchange from jψ1i to jψ2i. In the Hartree-Fock
(HF) approximation this occurs at ~Ec ≈ 2.5 for the
Coulomb interaction.
The electron-background interaction is

He-bg ¼
Z

d2rVedgeðyÞρeðx; yÞ; ð3Þ

where VedgeðyÞ ¼ −
R
d2r0ρbðy0Þvðr⃗ − r⃗0Þ is the edge con-

fining potential and ρbðyÞ is the positive background density.
In our model, the background density decreases linearly to
zero over a distance W at the edge [5]. The dimensionless
parameter ~w ¼ W=l characterizes the slope of Vedge,

ρbðyÞ ¼

8>><
>>:

ρ0 y < −W
2

ρ0
W
2
−y
W −W

2
< y < W

2

0 y > W
2

: ð4Þ

Theoretical analysis.—Our primary tool is the spin-
unrestricted Hartree-Fock (HF) approximation keeping up
to six spin-resolved LLs to include the effect of LL mixing

and spin mixing. In the HF approximation, the many-body
state is replaced by a variational Slater determinant, charac-
terized by all possible averages hc†i cji. We confine ourselves
to translation invariant states, described by hc†nkscn0k0s0 i ¼
δkk0Δns;n0s0 ðkÞ. In thebulk thematrixΔns;n0s0 is independent of
k and diagonal in n as well as in s (no LL mixing or spin
mixing). Near the edgeΔns;n0s0 acquires a k dependence, and
LL mixing or spin mixing will occur. The optimal Slater
determinant thatminimizes thevariational energy is found by
an iterative procedure carried out to self-consistency. At each
step, an effective one-body Hamiltonian [dependent on
Δns;n0s0 ðkÞ] is solved and the energy levels filled up to a
chemical potential chosen to satisfy overall charge neutrality.
The new state enables the computation of a new set of Δ,
giving the seed for the next iterative step [27]. The results of
the HF calculation are shown in Fig. 1. We use a screened
Coulomb interaction of the form vðq⃗Þ ¼ ð2πEc=qþ qscÞ,
where qsc is the inverse screening length. The results shown
are for qscl ¼ 10−2, though spin mode switching persists at
least up to qscl ¼ 0.5. In unrestricted HF, single-particle
levels cannot be generically labeled by spin and cannot cross

(a)
(b) (c)

(d)
(e) (f)

FIG. 1. (a) The phase diagram. The background color represents the bulk phase, white being partially polarized (j0↑; 0↓; 1↑i) and blue
being fully polarized (j0↑; 1↑; 2↑i). States are labeled i ¼ O (outermost), M (middle), and I (innermost). The plain white region also
denotes edge phase A (O ¼ 0↑, M ¼ 0↓, and I ¼ 1↑). Edge phase B (O ¼ 0↓, M ¼ 0↑, and I ¼ 1↑) is horizontally hatched, while
phase C (O ¼ 0↑,M ¼ 1↑, and I ¼ 0↓) is vertically hatched. Because of poor convergence of the HF, for 6 ≤ ~w ≤ 7, ~Ec ≃ 2.13 it is not
clear whether there is a direct transition between phases B and C, or whether phase A intervenes. In Figs. 1(b), 1(c), and 1(d) we depict
S̄zði; kÞ of the occupied single-particle states versus kl at ~Ec ¼ 2.3. Only occupied levels are depicted. The line for level i terminates
where level i crosses μ, with S̄zði; kÞ at the μ crossing defined as S̄zμðiÞ. The insets depict the energy dispersions of the HF single-particle
states vs kl, with the horizontal black line being μ. In Fig. 1(b) we are in phase A ( ~w ¼ 2.0) where no spin rotations occur. Figure 1(c)
shows S̄zði; kÞ vs kl at the transition ( ~w ¼ 4.28), with spin rotations occurring over a scale l, where the corresponding energy level
dispersions come close together in an avoided crossing (inset). Figure 1(d) shows S̄zði; kÞ vs kl in phase C ( ~w ¼ 5.0). The spin rotations
are quite abrupt, and occur where the corresponding dispersions undergo a sharp avoided crossing. In Fig. 1(e) we plot S̄zμðiÞ vs ~w at
~Ec ¼ 2.3. A discontinuous change in S̄zμ for theM and I levels is seen at the transition between phases A and C. Similar results hold at
~Ec ¼ 1.8 for the phase A to phase B transition, with S̄zμ showing a discontinuous change for the O and M levels, as shown in Fig. 1(f).

PRL 119, 186804 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 NOVEMBER 2017

186804-2



due to level repulsion. We therefore label the edge modes by
their location as i ¼ O (outermost), M (middle), and I
(innermost). To proceed further, we compute the quantum
expectation value S̄zði; kÞ for each occupied single-particle
state i at position kl. The spin character of the chiral edge
modes transporting current are determined by the S̄zði; kÞ of
the corresponding single-particle levels at the crossing with
the chemical potential, S̄zμðiÞ. This allows us to label an edge
mode with a spin.
Figure 1(a) shows two edge-mode switched phases. For

~w≲ 3, there is no spin mixing, and the edges follow the
bulk order:O ¼ 0↑,M ¼ 0↓, and I ¼ 1↑. This is phase A.
For 1.5≲ ~Ec ≲ 2.13 and ~w > 3, the system enters phase B
where the order of the edge modes isO ¼ 0↓,M ¼ 0↑, and
I ¼ 1↑. Phase C occurs for 2.13 < ~Ec < 2.5 and ~w > 3.5,
with the edge mode ordering O ¼ 0↑, M ¼ 1↑, and
I ¼ 0↓. For 6 ≤ ~w ≤ 7, ~Ec ≃ 2.13 HF converges poorly,
making it unclear whether there is a direct transition
between phases B and C, or whether a sliver of phase A
persists between them. Figure 1(b) shows S̄z vs kl of the
three occupied levels near the edge at ~Ec ¼ 2.3, ~w ¼ 2.0
(phase A). The lines terminate where the corresponding
level crosses μ. Figure 1(b) inset shows the energy
dispersions of the self-consistent HF states for the same
parameters. Figure 1(c) shows S̄z vs kl at the A → C
transition ( ~w ¼ 4.28), and Fig. 1(d) shows the same in
phase C ( ~w ¼ 5.0). Figures 1(e) and 1(f) show the expect-
ation value S̄zμ of the respective levels of O, M, and I that
intersect the Fermi energy as a function of ~w at ~Ec ¼ 1.8
and 2.3. The spin characters of O, M, and I show
discontinuous jumps, which indicate first-order transitions
in our approximation. The electron charge density hardly
varies through the entire regime [22,27].
The emergence of mode switching is quite robust and is

qualitatively unaffected by including LL or spin mixing
to higher LLs (n > 2). Phases B and C occur over a very
broad range of ~w, (phase C exists at least up to ~w ¼ 11).
Upon increasing the Zeeman coupling, the bulk phase
boundary between the partially and fully polarized states
moves lower in ~Ec, and phase C encroaches on phase B.
Furthermore, the lower boundary between phase A and
phase B in Fig. 1(a) moves upwards. Reducing the range
of the interaction by increasing qscl moves the phase
boundaries of edge phases B and C towards a larger
~w. Upon independently varying the strength of the
direct (Ecd) and exchange (Ecx) terms, we find that
mode switching occurs in HF only if Ecx > 0.6Ecd,
consistent with our claim that this is an exchange
effect [22].
To get beyond the HF limitation of single particle

occupation being restricted to either 0 or 1 (at T ¼ 0),
we investigated a class of variational states that do not
conserve particle number and allow continuously varying
0 ≤ nðkÞ ≤ 1. The simplest such state for the ν ¼ 1

spin-polarized edge is jψi ¼ QNs
k¼1ðuk þ vkeiθkc

†
kÞj0i.

Here, uk and vk (u2k þ v2k ¼ 1) are real numbers, and θk
is a set of phases chosen to minimize the translation-
symmetry breaking inherent in such states. This class
includes HF states. For ν ¼ 3, our variational state is [27]

jψi ¼
Y
k

ðUk þ V0keiθ0kc
†
0k↑ þ V1keiθ1kc

†
0k↓c

†
0k↑

þ V2keiθ2kc
†
1k↑c

†
0k↑ þ V3keiθ3kc

†
1k↑c

†
0k↓c

†
0k↑Þj0i: ð5Þ

When Ecx < 0.4Ecd, this ansatz does produce smoothly
varying nðkÞ at ν ¼ 3, with the variational energy lower
than the HF energy. However, upon increasing Ecx we
recover the HF solution, lending further support to
the validity of HF results and the transition being first
order.
Experimental signatures.—Before presenting transport

signatures of mode switching [27], we note that whenever
an edge changes from sharp to smooth, spin-mixed edge
modes will undergo avoided crossings with attendant spin
rotations along the edge [28–30]. Further, the ν ¼ 2 state
becomes fully polarized at ~Ec ≈ 2.13 (in HF at qsc ¼ 0). If
a QPC is tuned to be at dimensionless two-terminal
conductance g2 ¼ 2, the QPC region will be fully polarized
in the regime where phase C occurs, and unpolarized in the
regime where phase B occurs.
Our first “smoking gun” signature is in spin transport,

as illustrated in Fig. 2. The system is tuned to be in the
g2 ¼ 1 or g2 ¼ 2 conductance plateau, with the source on
the top left. Solid (dashed) lines indicate spin up (down)
modes at the edge, and spin rotations in space are
indicated by black circles on the figures. The current is
carried by the channels O andM [Fig. 2(a)]. For all edges
sharp and ~Ec > 2.13, there is a nontrivial spin rotation of
M as it enters the QPC region, but it rotates back upon
exiting the QPC, so that the current in the drain (top right)
remains unpolarized. When the right side is in phase C
[Fig. 2(c)], the current in the drain is spin polarized ↑. In
Fig. 2(b) we show a QPC tuned to g2 ¼ 1 in the regime
where phase B occurs (O ¼ 0↓, M ¼ 0↑, and I ¼ 1↑).
Now the source current (top left) is ↑ but the drain current
(top right) is ↓.
For our next signature, we consider the effect of static,

nonmagnetic disorder, which allows tunneling between
neighboring chiral modes of the same spin. In Figs. 2(d)
and 2(e), the region outside of the two QPCs is in phase A.
We tune the system to the g2 ¼ 1 plateau. If the inter-QPC
region is in phase A, the opposite spin polarizations of the
two outer channels 0↑,0↓ prevent disorder-induced tunnel-
ing, as shown in Fig. 2(d). If, however, the inter-QPC
region is in phase C [Fig. 2(e)], the two outer channels have
the same spin, and disorder-induced tunneling is allowed
on both the top and bottom edges. This leads to back-
scattering, and hence, to a degradation of the quantization
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of the conductance plateau. Similar results hold for g2 ¼ 2
when comparing setups with inter-QPC region being in
phase A or in phase B [27].
Summary and discussion.—We have found spin-

exchange driven edge phases and quantum phase transi-
tions that take place at ν ¼ 3 for low Zeeman energies. Our
control parameters are the interaction strength ~Ec and the
edge width ~w. We focus on ~Ec ≲ 2.5: a partially polarized
bulk state with the LLs 0↑, 0↓, and 1↑ occupied. For small
~w, the order of the edges follows the bulk order (phase A).
However, as ~w becomes larger, we find two distinct edge
mode-switched phases: For 1.5≲ ~Ec ≲ 2.13, phase B
occurs with the edge ordering O ¼ outermost ¼ 0↓,
M ¼ middle ¼ 0↑, and I ¼ innermost ¼ 1↑. For 2.13≲
~Ec ≲ 2.5 phase C occurs with the edge ordering O ¼ 0↑,
M ¼ 1↑, and I ¼ 0↓. Heuristically, these phases result
from an exchange attraction between the like-spin edge
modes. Employing approximate analytical methods (the
spin unrestricted Hartree-Fock approximation, and mini-
mization with respect to a particle nonconserving varia-
tional state) we find the transitions to be first order. We
stress that there is no significant charge rearrangement
associated with these transitions, putting spin mode
switching in a qualitatively different category from the
extensively investigated phenomena of charge-driven edge
reconstruction. The crucial requirements for the switching
transition to occur are (i) a partially polarized bulk state,

(ii) a moderate to strong interaction strength ~Ec, and (iii) a
smooth edge. We have also provided (spin and charge)
transport signatures of such transitions, relying on exper-
imentally accessible setups.
Our findings have diverse implications: e.g., (i) bulk

ν ¼ 1 supports charged Skyrmions [31], while bulk ν ¼ 3
does not [32,33]. The ν ¼ 1 spinful edge is known to be
unstable to the formation of edge Skyrmions [34]. Similar
edge spin texture instabilities would likely arise in our
ν ¼ 3 system, especially in phase C, with some similarities
to charge-neutral bilayer graphene [35]. (ii) Our results
should have direct analogues at ν ¼ 4, and more interest-
ingly, in the QHE in graphene [36–38]. (iii) Our analysis
should generalize to fractional quantum Hall states, such as
ν ¼ ð3=7Þ, which is the composite fermion analog [39] of
the ν ¼ 3 state.
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FIG. 2. Experimental setups to show “smoking gun” signatures of mode switching. The source (drain) is always on the top left (right).
Red solid lines depict the 0↑ mode, green dashed lines depict the 0↓ mode, and blue solid lines depict the 1↑ mode. The edges are
labeled on the bottom right of each panel. Spin rotations in space are indicated by black circles. (a)–(c) are single QPC setups. (a) All the
edges are in phase A, g2 ¼ 2, and ~Ec > 2.13. The full polarization of the ν ¼ 2 QPC region forces the M and I modes undergo a spin
rotation upon entering the QPC, and an inverse rotation upon exit. The incoming or outgoing current is spin unpolarized. (b) When the
edges to the right of the QPC are in phase B, the current at g2 ¼ 1 reverses spin polarization from ↑ to ↓ at the QPC. (c) When the edges
to the right of the QPC are in phase C, the current (from A to C) at g2 ¼ 2 changes from spin unpolarized to spin polarized at the QPC.
(d) and (e) Two-QPC setups at g2 ¼ 1. (d) When the confining potential in the middle section is sharp on both the upper and lower edges
(in phase A), a high quality g2 ¼ 1 plateau emerges. (e) When the confining potential in the middle section is smooth at both edges (in
phase C), disorder-induced degradation of the conductance plateau due to backscattering in the inter-QPC region is expected.
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