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We study micromotion in two-dimensional periodically driven systems in which all bulk Floquet
eigenstates are localized by disorder. We show that this micromotion gives rise to a quantized time-
averaged orbital magnetization density in any region completely filled with fermions. The quantization of
magnetization density has a topological origin, and reveals the physical nature of the new phase identified
in P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H. Lindner [Phys. Rev. X 6, 021013 (2016)]. We thus
establish that the topological index of this phase can be accessed directly in bulk measurements, and
propose an experimental protocol to do so using interferometry in cold-atom-based realizations.
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Periodic driving was recently introduced as a means for
achieving topological phenomena in a wide variety of
quantum systems. Beyond providing new ways to obtain
topologically nontrivial band structures [1–15], periodic
driving can give rise to wholly new types of topological
phenomena without analogues in equilibrium [16–32].
In a periodically driven system, the unitary Floquet

operator acts as a generator of discrete time evolution over
each full driving period. As in nondriven systems, the
spectrum and eigenstates of the Floquet operator can be
classified according to topology [2,4,16]. However, in
addition to the stroboscopic evolution of the system, the
micromotion that takes place within each driving period is
crucial for the topological classification of periodically
driven systems [17–21,24–28].
Here we uncover a new type of topological quantization

phenomenon associated with the micromotion of periodi-
cally driven quantum systems. We focus on periodically
driven two-dimensional (2D) lattice systems in which all
bulk Floquet eigenstates are localized by disorder (see
Fig. 1). We show that, within a region where all states are
occupied, the time-averaged orbital magnetization density
⟪m⟫ is quantized, ⟪m⟫ ¼ ν=T, where ν is an integer and T
is the driving period. The bulk observable ⟪m⟫ thus serves
as a topological order parameter, characterizing the topo-
logically distinct fully localized phases found in Ref. [22].
We propose a bulk interference measurement to probe this
invariant in cold-atom systems.
Topological invariants are often associatedwith quantized

response functions. Famously, the Hall conductivity of an
insulator is proportional to the Chern number [33].
Interestingly, topology in driven systems may directly give
rise to quantization of time-averaged observables, such as
the pumped current in the Thouless pump [34]. Similarly,
the response of magnetization density to changes of
chemical potential in a quantum Hall system is quantized

when the chemical potential lies in an energy gap [35–37]. In
contrast, here we find quantization of the magnetization
density itself.
For concreteness, we consider a periodically driven

two-dimensional lattice model with one orbital per site.
Dynamics are governed by a time-periodic Hamiltonian
HðtÞ ¼ Hðtþ TÞ, where T is the driving period.
The periodic driving gives rise to a unitary evolution

UðtÞ ¼ T e−i
R

t

0
dt0Hðt0Þ, where T denotes time ordering.

The spectrum of the Floquet operator UðTÞ, given by
UðTÞjψnð0Þi ¼ e−iεnT jψnð0Þi, defines the Floquet eigen-
states fjψnðtÞig and their quasienergies fεng.
We characterize micromotion in this system via the

orbital magnetization [39]

MðtÞ ¼ 1

2
ðr × _rðtÞÞ · ẑ; ð1Þ

where _rðtÞ ¼ −i½r; HðtÞ�. The magnetization operator (1) is
equivalently expressed as the response of the Hamiltonian

FIG. 1. Quantized magnetization density in a two-dimensional
periodically driven system where all Floquet eigenstates are
localized. In a region where all sites are initially occupied (shaded
area), the time-averaged orbital magnetization density ⟪m⟫ is
quantized as ν=T, where ν is an integer and T is the driving
period. A quantized average current ⟪I⟫ ¼ ν=T runs along the
edge of the filled region.
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to an applied uniform magnetic field B, MðtÞ ¼
−∂HðtÞ=∂B [40]. In nondriven systems, the magnetization
of a state hence determines the response of its energy to the
field, ΔE ∼ −M ·B. In periodically driven systems, a
similar relation holds between a Floquet eigenstate’s
time-averaged magnetization and the response of its qua-
sienergy to an applied magnetic field. We define hOiτ ≡
ð1=τÞ R τ

0 dthψðtÞjOðtÞjψðtÞi as the time-averaged expect-
ation value of an operator OðtÞ in the state jψðtÞi. The
single-period averaged magnetization of a (localized)
Floquet eigenstate jψnðtÞi is given by [40,42]

hMiðnÞT ≡ 1

T

Z
T

0

dthψnðtÞjMðtÞjψnðtÞi ¼ −
∂εn
∂B : ð2Þ

Using Eqs. (1) and (2), we may associate a net mag-
netization with a single particle in a localized Floquet
eigenstate. It is useful to define a local time-averaged
magnetization density, associated with each plaquette p of
the lattice, that characterizes the response of quasienergy to
a magnetic flux ϕp applied locally through plaquette p. We
define the magnetization density operator as [43]

mpðtÞ ¼ −
∂HðtÞ
∂ϕp

; ϕp ¼
Z
p
d2rBðrÞ; ð3Þ

where the integral is taken over the area of plaquette p.
The total time-averaged magnetization, hMiτ, is given by
the sum of magnetization densities over all plaquettes,
hMiτ ¼

P
phmpiτa2, where a is the lattice constant.

The definition of magnetization density in Eq. (3) applies
for both single-particle and many-body systems. In par-
ticular, for a (single- or many-particle) Floquet eigenstate
jψðtÞi with quasienergy ε, the time-averaged magnetization
density is given by hmpiT ¼ −∂ε=∂ϕp.
In the continuum, equilibrium magnetization density is

related to the current density j through Ampere’s law,
j ¼ ∇ ×m. For a (stationary) system on the lattice,
Ampere’s law relates the time-averaged magnetization
densities on adjacent plaquettes p and q to the time-
averaged current hIpqiτ on the bond between them [40],

hIpqiτ ¼ hmpiτ − hmqiτ: ð4Þ

Here we take positive current to be counterclockwise with
respect to plaquette p.
Magnetization in finite droplets.—We now show that the

time-averaged magnetization density is quantized in a finite
“droplet,”where all states in a regionof linear dimensionR are
initially occupied while the surrounding region is completely
empty (Fig. 1). Specifically, we consider the long-time
average of the magnetization density for a plaquette p deep
inside the droplet,⟪mp⟫, where⟪O⟫≡ limτ→∞hOiτ. Below
we show that ⟪mp⟫ takes a constant value m̄∞, up to

exponentially small corrections [44]. We then show that
m̄∞ is quantized.
Since all Floquet eigenstates are localized, the particle

density will only evolve significantly in a strip of width ξ
around the boundary of the filled region, where ξ is the
single-particle localization length of the Floquet eigen-
states. Hence, the droplet retains its shape up to a smearing
of its boundary. At a distance d ≫ ξ from this boundary, the
density change remains exponentially small in d=ξ at any
time. Within the droplet, all (time-averaged) bond currents
therefore vanish, hIpqiτ ¼ 0 for all τ. The magnetization
density ⟪mp⟫ must therefore be the same for all plaquettes
deep within the droplet.
The uniform value of the magnetization density deep

within the droplet may depend on the droplet’s size. We
note that ⟪mp⟫ is given by the sum of magnetization
contributions from all occupied states that overlap with
plaquette p. Therefore, if the droplet size is increased by
adding a section of new (filled) sites in a region far away
from plaquette p, ⟪mp⟫ can only change by an exponen-
tially small amount due to the contributions of the tails of
the newly added localized states. Thus, for a plaquette
located a distance d from the boundary, we obtain
⟪mp⟫ ¼ m̄∞ þOðe−d=ξÞ, where m̄∞ is the value in the
thermodynamic limit. As we show below, m̄∞ is quantized.
Interestingly, a nonzero value of m̄∞ implies that a

current circulates around the boundary of the droplet. The
magnetization density drops from the value m̄∞ to zero over
a distance of order ξ across the droplet’s boundary. Using
Ampere’s law (4), the total time-averaged current ⟪I⟫
passing through a cut through this strip (see Fig. 1)
is ⟪I⟫ ¼ m̄∞ þOðe−R=ξÞ.
Quantization of magnetization density.—To prove the

quantization of m̄∞, we consider the total magnetization
⟪M⟫ of a droplet of N particles. On one hand we have

⟪M⟫ ¼ P0
n hMiðnÞT þOðN1=2Þ, where the sum runs over

single particle Floquet eigenstates jψni with centers local-
ized within the perimeter of the droplet. The OðN1=2Þ
correction accounts for the partially occupied Floquet
eigenstates near the droplet’s boundary. On the other hand,
since the magnetization density deep inside the droplet is
constant and given by m̄∞, we have ⟪M⟫ ¼ Na2m̄∞ þ
OðN1=2Þ. Here Na2 is the total area of the droplet, with the
OðN1=2Þ correction capturing the uncertainty of the area
due to its fuzzy boundary. By equating the expressions for
⟪M⟫ and taking the N → ∞ limit, we identify

m̄∞ ¼ lim
N→∞

1

Na2
X

n
0hMiðnÞT : ð5Þ

The quantity ð1=NÞP0
n hMiðnÞT is simply the average

magnetization of Floquet eigenstates in the droplet; below,
we show that this average is quantized in large, fully
localized systems. To do this, we explicitly compute the
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average magnetization over all Floquet eigenstates for a
fully localized system on a large torus of area A ¼ L2a2,
where L2 is the number of sites.
For the system on a torus, we compute the time-averaged

magnetization hMiðnÞT of each Floquet eigenstate jψnðtÞi
using Eq. (2). To use the form hMiðnÞT ¼ −∂εn=∂B, we must
specify how the field B is introduced. Crucially, on a torus,
the net magnetic flux must be an integer multiple ofΦ0 (the
flux quantum) [45]; consequently, the strength of a uniform
field cannot be varied continuously. However, for ξ=L ≪ 1,

we may use hMiðnÞT ¼ −∂εn=∂BþOðe−L=ξÞ, where εnðBÞ
is the quasienergy of state jψni in the presence of a locally
uniform magnetic field, of strength B within the support
region of jψni, but zero net flux through the torus. The
Oðe−L=ξÞ correction arises from the nonuniformity of the
field, which is concentrated where the wave function is
exponentially small.
To evaluate the averagemagnetization of localized Floquet

eigenstates, ð1=L2ÞPnhMiðnÞT ¼ −ð1=L2ÞPnð∂εn=∂BÞ, we
examine the Floquet operatorUðTÞ in the presence of a global
uniform magnetic field of strength B0 ¼ 2π=A, correspond-
ing to precisely one flux quantumpiercing the torus. For large
A, the quasienergy in the uniformfieldB0 is equal to that in the
locally uniform field described above (withB ¼ B0), up to an
exponentially small correction in L=ξ. Moreover, for small
field strengths, ∂εn=∂B is well approximated by a finite
difference, such that [46]

hMiðnÞT ¼ −½εnðB0Þ − εnð0Þ�=B0 þOð1=AÞ: ð6Þ

The Oð1=AÞ correction accounts for the error in discretizing
the derivative.

Using Eq. (6), we can access
P

nhMiðnÞT directly via the
determinant of the system’s Floquet operator [21], jUðTÞj.
Writing log jUðTÞj ¼ R

T
0 dt∂t log jUðtÞj, we use the identity

∂t log jUðtÞj ¼ Tr½U†ðtÞ∂tUðtÞ�, together with ∂tUðtÞ ¼
−iHðtÞUðtÞ, and find [47]

log jUðTÞj ¼ −i
Z

T

0

dtTr½HðtÞ�: ð7Þ

When a magnetic field is introduced, the hopping amplitudes
between sites of the lattice acquire additional Peierls phases,
Hab → Habeiθab . In the position basis, themagnetic field thus
only affects the off-diagonal elements of theHamiltonian, and
we conclude that Tr½HðtÞ�, and hence jUðTÞj, are indepen-
dent of magnetic field. Using jUðTÞj ¼ e−i

P
n
εnT , we find

X
n

εnðB0Þ ¼
X
n

εnð0Þ −
2πν

T
; ð8Þ

where ν is an integer.

Recall that m̄∞, the magnetization density in a filled
droplet, is obtained from the average magnetization of the
Floquet eigenstates in the droplet, see Eq. (5). The torus
geometry discussed above allows us to compute this
average in the thermodynamic limit. Using Eqs. (6) and (8)

we obtain ð1=L2ÞPnhMiðnÞT ¼ 2πν=L2B0T [48]. Com-
paring to Eq. (5), we find

m̄∞ ¼ ν

T
: ð9Þ

Remarkably, this quantization has a topological origin. As
we show in the Supplemental Material [40], the integer ν is
equal to the winding number invariant characterizing the
anomalous Floquet-Anderson insulator (AFAI) phase,
introduced in Ref. [22]. The magnetization density thus
serves as a bulk topological order parameter that character-
izes distinct fully localized Floquet phases. Note that the
emergence of a nonzero, quantized magnetization density is
a unique dynamical phenomenon, with no counterpart in
nondriven systems: for static systems, Eq. (9) must hold for
all values of T, which requires ν ¼ 0 [49].
Interferometric probe of quantized magnetization.—

We now outline an interferometric scheme for measuring
the spatially averaged magnetization density ⟪m̄⟫ ¼
⟪M⟫=Afilled of a cloud of fermionic cold atoms in an
optical lattice (see Fig. 2), where Afilled is the area of the
initially filled region. We thus offer a direct probe to
measure the bulk topological invariant of the AFAI.
Consider an atom traversing a closed trajectory in the

presence of a weak magnetic field B. Semiclassically, the
wave function picks up an additional phase shiftΔϕ ¼ BAorb
due to the field, where Aorb is the area enclosed by the
orbit [50]. Correspondingly, a simple quantum mechanical

(a) (b)

(c) (d)

FIG. 2. Interferometric measurement of quantized orbital mag-
netization density in a cold-atomsystem. (a) The system is prepared
by filling a region of an optical lattice with spin-1=2 atoms fully
polarized along x. The system is evolved with a spin-independent
periodic drivingHamiltonian, plus a weak spin-dependent uniform
synthetic magnetic field that only affects the j↑i component of the
system’s wave function (b), while the j↓i component is unaffected
(c). (d) The spin-dependent field gives rise to a phase differenceΔϕ
between the j↑i and j↓i components of each atom’s wave function.
The phase shift yields a net y polarization of total spin, proportional
to the system’s time-averaged magnetization.
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calculation [40] shows that the phase shift acquired by an
atom inFloquet eigenstate jψnðtÞi over a full driving period is
proportional to the state’s magnetization, Δϕn ¼ hMiðnÞT BT.
Using this phase shift, the magnetization of a cloud of

atoms can be measured in a Ramsey-type interference
experiment in a situation where the atoms have two internal
(“spin”) states j↑i and j↓i. First, the system should be
prepared by completely filling a region of known area,
Afilled, with atoms fully spin-polarized along the “x”
direction, jψð0Þi ∝ ðj↑i þ j↓iÞ= ffiffiffi

2
p

[Fig. 2(a)]. The system
should then be evolved with the driving Hamiltonian to
allow the particle density to reach a steady profile [51], as in
Fig. 3(a). To perform the measurement, the cloud of atoms
is then evolved throughN driving periods in the presence of
a weak spin-dependent orbital effective magnetic field B
[Figs. 2(b)–2(c)], which, e.g., acts only on the j↑i species.
Through the evolution, the j↑i component of each atom’s
wave function gains a phase shift relative to the j↓i
component, yielding a nonzero average y spin per particle,
hσ̄yi, [Fig. 2(d)]. For small precession angles, the average y
spin after N periods is given by hσ̄yðNTÞi≡ΩNTBa2NT,
with [40]

ΩNT ¼ ⟪m̄⟫þ 1

NT
O
�

ξ3=2

aR1=2

�
þOðBÞ: ð10Þ

Importantly, the second term vanishes in the long-time
limit (and scales to zero at finite times for large systems),
thus revealing the quantized magnetization density [40].
Numerical results.—We simulated the experimental

protocol outlined above using a tight-binding model on a

two-dimensional bipartite square lattice, with Hamiltonian
HðtÞ ¼ HcleanðtÞ þ Vdisorder. The HamiltonianHcleanðtÞwas
considered in Ref. [17], and is of the form

HcleanðtÞ ¼
X
r∈A

X4
n¼1

JnðtÞðc†rþbn
cr þ H:c:Þ; ð11Þ

where cr is the fermionic annihilation operator on the lattice
site with coordinate r, and the first sum runs over sites r on
sublattice A. The vectors fbng are given by b1 ¼ −b3 ¼
ða; 0Þ andb2 ¼ −b4 ¼ ð0; aÞ, wherea is the lattice constant.
The driving period is divided into five segments of equal
length T=5. In the nth segment (n ≤ 4), JnðtÞ ¼ J, while all
other hopping amplitudes are set to zero; in the fifth segment
all hopping amplitudes are set to zero [see Fig. 3(c)]. We
introduce disorder through a time-independent potential
Vdisorder ¼

P
rwrc

†
rcr, where the sum runs over all sites,

and the on-site energies fwrg are randomly drawn from a
uniform distribution in the interval ½−W;W�. The model has
hopping amplitude J and disorder strength W both set to
2.5π=T. This brings the system well into the AFAI phase, for
which we expect m̄∞ ¼ 1=T [40].
To find the magnetization density of the system, we

consider a single disorder realization on a lattice of 80 × 80
sites and open boundary conditions. We initially fill a
region of 50 × 50 sites (i.e., R ¼ 50) centered in the middle
of the lattice, and prepare the state by evolving it for 20
driving periods at zero magnetic field [see Fig. 3(a)]. For
further times ranging from 0 to 50T we evolve the system in
the presence of a spin-dependent magnetic field of strength
Ba2 ¼ 2π × 10−4. We extract the spatially averaged mag-
netization density ⟪m̄⟫ from the long-time limit of the
normalized growth rate ΩNT of average y spin per atom,
hσ̄yðNTÞi. ΩNT rapidly converges (up to a finite-size
correction) to the quantized value of the magnetization
density, 1=T, reaching 0.9998 after 100 periods [see
Fig. 3(b) and the Supplemental Material [40] ]. The inset
in Fig. 3(b) shows the deviation of Ω50T from the quantized
value m̄∞ ¼ 1=T for various sizes of the droplet, taken as a
root-mean-square average over 100 disorder realizations at
each system size. We find a power law decay of the
fluctuations with system size, ΔΩ50T ∼ R−0.55.
Discussion.—Here we showed that the orbital magneti-

zation density is quantized in fully filled regions of
localized Floquet systems. We then proposed an exper-
imental scheme for measuring the quantized magnetization
density in cold atomic systems.
We derived the quantization of magnetization density

within a tight-binding model with one (s-type) orbital per
site. This means that each on-site orbital does not carry any
intrinsic magnetization. In the continuum, small nonquan-
tized contributions to the magnetization density may arise
due to mixing with higher bands. Such contributions are
strongly suppressed when the driving is adiabatic with

(a)

(c)

(b)

FIG. 3. (a) Particle density in the system after 20 driving
periods, for an initially filled 50 × 50 square of sites. (b) Nor-
malized growth rate ΩNT of the average y spin per atom [see text
above Eq. (10)]. The long-time-averaged magnetization density
⟪m̄⟫ is extracted from the saturation value at long times. Inset:
Deviation ΔΩ50T of Ω50T from the quantized value m̄∞ vs droplet
size R. The value of ΔΩ50T is obtained as an rms average of
Ω50T − m̄∞ over 100 disorder realizations. (c) Depiction of the
tight-binding model.
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respect to the gap to higher bands, and the lattice is very
deep such that the gap is large compared to the band-
width [40].
It is natural to expect that our results will hold also in the

presence of interactions, given that the system is strongly
disordered and, hence, may be many-body localized.
Recently, progress has been made in constructing interact-
ing analogues of the AFAI [52,53]. The fate of the
magnetization in the presence of interactions remains an
open direction of investigation.
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