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Molecular crystals such as polyethylene are of intense interest as flexible thermal conductors, yet their
intrinsic upper limits of thermal conductivity remain unknown. Here, we report a study of the vibrational
properties and lattice thermal conductivity of a polyethylene molecular crystal using an ab initio approach
that rigorously incorporates nuclear quantum motion and finite temperature effects. We obtain a thermal
conductivity along the chain direction of around 160 Wm−1 K−1 at room temperature, providing a firm
upper bound for the thermal conductivity of this molecular crystal. Furthermore, we show that the inclusion
of quantum nuclear effects significantly impacts the thermal conductivity by altering the phase space for
three-phonon scattering. Our computational approach paves the way for ab initio studies and computational
material discovery of molecular solids free of any adjustable parameters.
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Polymers have long been of interest for their potential as
flexible thermal conductors in applications such as flexible
electronics [1–4]. In bulk form, essentially all polymers are
thermal insulators, with a thermal conductivity of less than
1 Wm−1K−1, due to the random orientation of the mole-
cular chains [5]. However, samples with highly aligned
molecular chains may exhibit thermal conductivities as
much as 2 orders of magnitude larger. Early work by Choy,
Chen, and Luk [6] demonstrated that increasing the crys-
tallinity in polymers drives an increase in thermal conduc-
tivity along the direction of the covalently bondedmolecular
chains. In low-density polyethylene, for instance, they
reported increased thermal conductivity along the chain
direction from 0.4 to 1.5 Wm−1K−1 when the polymers are
stretched by a factor of 5. Other experiments on mechan-
ically stretched bulk polyethylene [7,8] report thermal
conductivities as high as ∼42 Wm−1K−1 along the stretch-
ing direction due to crystalline alignment of the chains.
More recently, Shen et al. [9] reported a high thermal

conductivity of around 100 Wm−1 K−1 in high-quality
ultradrawn polyethylene nanofibers. Wang et al. [10] used
an optical method to study heat transport along polymer
fibers, reporting thermal conductivity on the order of tens
of Wm−1K−1 for polymers such as crystalline polyethyl-
ene and poly (p-phenylene benzobisoxazole). Singh et al.
[11] reported amorphous aligned polythiophene fibers with
a thermal conductivity of around 4 Wm−1 K−1, a factor of
20 increase over that of the unaligned fibers.
Despite these experimental advances, the theoretical

treatment of heat transport in molecular crystals remains
less developed. Molecular dynamics has been used in many
studies to examine heat transport in polymers such as
stretched polyethylene [12] and polydimethylsiloxane [13].
However, the semiempirical potentials used in these studies
restrict their predictive power, especially for the polymers
for which experimental data are scarce or unavailable.

Additionally, as with covalent crystals, semiempirical
potentials are typically not designed to yield accurate cubic
force constants, resulting in discrepancies in theoretical
predictions of thermal conductivity for polymers. For in-
stance, reports of thermal conductivity of polyethylene obta-
ined by classicalmolecular dynamicswith different potentials
vary from ∼45 [14] to 310� 190 Wm−1K−1 [15]. As a
result, a rigorous upper bound for the thermal conductivity of
molecular crystals such as polyethylene is lacking.
In addition to this challenge, most prior molecular

dynamics simulations use a finite temperature description
based on classical statistics of the nuclei motion [9,11]. This
assumption is valid as long as zero-point motion can be
neglected. However, molecular crystals like polyethylene
contain large numbers of hydrogen atoms which have zero-
point kinetic energy corresponding to around 1000 K.
Excluding nuclear quantum effects leads to serious errors
in other calculations, for instance, incorrectly predicting the
phase stability of crystalline hydrogen [16,17] and structural
and electronic fluctuations in water [18–20]. However, the
impact of nuclear quantum effects on thermal transport
properties has been minimally studied and cannot be
accounted for with typical finite-displacement methods
used for covalent crystals.
In this Letter, we investigate the lattice dynamics and the

intrinsic thermal conductivity of crystalline polyethylene using
an ab initio approach that rigorously includes nuclear quantum
motion and finite temperature effects. We obtain a thermal
conductivity of 164 Wm−1 K−1 at room temperature, provid-
ingarigorousupperboundfor theintrinsicthermalconductivity
of crystalline polyethylene. We also find that nuclear quantum
motion has an unexpectedly large impact on the thermal
conductivity by altering the phonon dispersion and thereby
modifying the phonon scattering phase space compared to the
classical prediction. Our computational approach paves the
way for ab initio studies and computational material discovery
of molecular solids without any adjustable parameters.
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We study thermal conduction in crystalline polyethylene
by lattice vibrations using the density functional theory
in the Born-Oppenheimer approximation. We use the
temperature-dependent effective potential method (TDEP)
[21–23] to account for the zero-pointmotion and the thermal
fluctuations of the nuclei following Bose-Einstein statistics.
TDEP has been extensively described in prior publications.
Briefly, the method identifies effective harmonic and cubic
interatomic force constants consistent with the thermal
displacements and forces of a canonical ensemble at a
specified temperature. These force constants represent the
best possible representation of the Born-Oppenheimer
potential energy surface for atomic displacements around
the equilibrium positions. These force constants can then be
used in conjunctionwith the anharmonic perturbation theory
to calculate lattice dynamics and thermal conductivity [24].
In prior implementations of TDEP, forces and displace-

ments were obtained by performing ab initio molecular
dynamics with a canonical ensemble. Recently, we reported
an efficient stochastic method for TDEP that eliminates the
need to perform ab initio molecular dynamics [25]. Briefly,
we use the eigenvectors of the crystal structure to generate
snapshots of the supercell with thermal displacements corre-
sponding to a specified temperature rather than usingmolecu-
lar dynamics with a thermostat. To begin the procedure, we
obtain the normalmodes of the crystal using amodel potential
and generate the snapshots with thermal displacements for
canonical ensembles at temperatureT according to the desired
thermal occupation function. We then evaluate interatomic
forces for each snapshot using a standard quantummechanical
code. TDEP iteratively generates new force constants from
forces and displacements and new snapshots from force
constants until achieving self-consistency. Further details
are available in Ref. [25]. The snapshot technique with
classical occupation statistics has previously been used by
West and Estreicher [26] and Souvatzis et al. [27], with
quantum statistics by Errea, Calandra, andMauri [28], among
others and has a long history [29].
Accounting for Bose-Einstein statistics, and particularly

zero-point motion, is especially important in molecular
crystals due to the presence of many H atoms, yet most
prior thermal conductivity calculations assumed Maxwell-
Boltzmann (classical) statistics and ignored these effects. In
this work, we account for nuclear quantum effects of the
atoms in the ensemble using thermal amplitudes given by
the Bose-Einstein distribution rather than classical statis-
tics. Specifically, the thermal amplitudes are given by

hAisi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏð2ns þ 1Þ
2miωs

s

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
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≈
1

ωs

ffiffiffiffiffiffiffiffi

kBT
mi

s
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Here Ais is the amplitude of mode s projected onto atom i
with mass mi, ωs is the normal mode frequency, and ns is
the thermal occupation factor. In this way, a simple
modification to the method of Ref. [25] enables nuclear

quantum effects to be rigorously incorporated into the
calculation with no additional computational expense.
Forces are calculated via the projector augmented wave

method [30], as implemented in VASP [31–34]. In this work,
the procedure to obtain self-consistent force constants
required eight iterations, where calculating normal modes,
generating snapshots, calculating forces, and fitting force
constants define an iteration. Each iteration used 600
snapshots to ensure sufficient constraints to the IFCs and
their convergence within each iteration. Crystalline poly-
ethylene was modeled as 5 × 3 × 2 repetitions of the fully
relaxed orthorhombic unit cell containing 12 atoms which
belong to two chains of C2H4 molecules. The plane wave
energy cutoff was set at 800 eV, and Brillouin zone
integrations were carried out on a 3 × 3 × 3 mesh.
Exchange-correlation and van der Waals interactions were

treated with the van der Waals (vdW) density functional [35–
37]. Recent works have reported advances in the treatment of
vdW interactions. Brown-Altvater, Rangel, and Neaton [38]
showed that including vdW interactions enabled the accurate
prediction of structural parameters and phonon frequencies of
crystalline naphthalene. Kleis et al. [39] accurately predicted
structural, cohesive, and elastic properties for crystalline
polyethylene by including vdW interactions via the vdW
density functional [35]. In this work, we employ the vdW
density functional, as it has no empirical input or fitted
parameters, has been tested for the polyethylene crystal [39],
and leads to a stable structurewith correct values for the elastic
constants as well as structural parameters such as lattice
parameters and angular orientation of the polymer chains.
We performed calculations on a grid on five temperatures,

f100; 150; 300; 450; 600g K, and six volumes. For each
volume, the structure was fully relaxed until forces on the
atoms were less than 10−7 eV=Å. The harmonic and cubic
interatomic force constants for temperatures and volumes
between these grid points were obtained by interpolation.
Using TDEP method, we obtained the Helmholtz free energy
surface FðV; TÞ, minimized the free energy to calculate the
equilibrium volume at each temperature, and evaluated vibra-
tional and transport properties at these conditions.
The thermal conductivity is calculated by iteratively solving

the full Boltzmann transport equation (BTE) [24] on a
45×45×45 q-point grid on which momentum is exactly
conserved. For energy conservation we employed the tetra-
hedron approach [40]. Isotopic scattering [41] from the natural
distribution is included in the iterative solution of the BTE.
As an initial validation of our calculations,we compare the

phonon spectral function along the chain direction with the
available experimental measurements [42,43]. The result is
shown in Fig. 1(c) along with the experimental data at 25 K.
The calculated frequencies of longitudinal and transverse
acoustic modes agree well with available experimental data.
We next proceed to compute the thermal conductivity

of the polyethylenemolecular crystal versus temperature. The
result is shown in Fig. 2(a), demonstrating a thermal con-
ductivity along the chain direction of around 160 Wm−1K−1
at room temperature and a weak temperature dependence.
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The thermal conductivity perpendicular to the chain direction
is around 2.5 Wm−1 K−1, demonstrating that the polyethyl-
ene crystal is highly thermally anisotropic. At 100 K, the
thermal conductivity increases to around 300 Wm−1K−1
along the chain and 8 Wm−1K−1 in the normal directions.
Our calculation, which included neither semiempirical poten-
tials nor other fitting parameters, thus provides a rigorous
upper bound for the intrinsic thermal conductivity of poly-
ethylene crystals.
The obtained thermal conductivity is in reasonable

agreement with prior experimental and computational
works. Computationally, thermal conductivity for crystal-
line PE using classical MD simulations was predicted to
range from ∼45 [14] to 310� 190 Wm−1K−1 [15].
Although these calculations used semiempirical potentials,
their results are not expected to be orders of magnitude
different than the actual value, and thus our calculated value
is at least qualitatively consistent with these results.
Experimental reports of thermal conductivity of drawn

polyethylene range from around 20–40 Wm−1K−1 [7,10]
to around ∼100 Wm−1K−1 for a nanofiber [9]. Our work
suggests that the thermal conductivity of the nanofiber
nears the intrinsic thermal conductivity of polyethylene
crystals. As experimental samples may contain various
types of defects, we examine the influence of point defects

on thermal conductivity by incorporating oxygen as point
(mass) defects, substituted on C sites, using the Tamura
formula [41]. With 0.25 at.% oxygen, thermal conductivity
reduces by 28% to 118 Wm−1K−1, indicating that the
thermal conductivity is sensitive to this type of defect.
For comparison, additional calculations were performed

using classical statistics in which thermal displacements
follow the Maxwell-Boltzmann distribution rather than the
Bose-Einstein distribution. Interestingly, the thermal con-
ductivity along the PE chain using classical statistics is
considerably higher by around 50% at room temperature
and more than a factor of 2 larger at 100 K. It is important to
note that the quantum and classical calculations differ by
only the thermal displacements and, hence, the regions of
phase space sampled to construct effective Hamiltonians.
Wewant to emphasize the importance of vdW interactions

in the calculation. Although we found our calculation to be
insensitive to the particular choice of vdW functional used,

(a)

(b) (c)

FIG. 2. (a) Calculated thermal conductivity of a polyethylene
molecular crystal along the chain direction as a function of the
temperature including nuclear quantum effects (red line) and
assuming classical statistics (yellow line). Inset: Thermal conduc-
tivity, normal to the chain direction. (b) Total spectral thermal
conductivity and spectral conductivity decomposed into acoustic
and semiopticalmodes at room temperature. The contribution of the
optical modes above 20 THz to the thermal conductivity is
negligible. In the frequency region between 8 and 16 THz, the
longitudinal acoustic and optical modes carry the most heat.
(c) Cumulative thermal conductivity as a function of the mean free
path. Most heat is conducted by longitudinal modes with compa-
rablemean free paths that are less than 1 μm.Themean free paths of
semioptical and transverse acoustic modes do not exceed 100 nm.

(a) (b)

(c)

FIG. 1. (a) Enclosed in the box is a unit cell of bulk crystalline
polyethylene, containing two molecular chains, projected onto
the yz plane where the x coordinate is along the chain. (b) A 3D
representation of the bulk crystalline polyethylene. The polyethyl-
ene crystal is formed from long parallel polymer chains and
stabilizes in the base-centered orthorhombic crystal structure,
confirmed by x-ray and neutron scattering measurements [44–46].
(c) Spectral function along the chain direction at 25 K compared
with experimental data for the longitudinal [42] and transverse
[43] acoustic modes. Inset: Longitudinal optical and acoustic
modes are close in frequency above 5 THz.
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including these weak interactions was essential, both to
stabilize the structure and to account for additional interchain
scattering processes. The absence of vdWinteractions causes
an underestimation of interchain scattering and a significant
increase in thermal conductivity along the chain direction.
We provide additional insight into the thermal transport

properties by calculating the spectral thermal conductivity
versus phonon frequency in Fig. 2(b).We further decompose
the total spectral conductivity at 300 K into the contributions
of acoustic and semioptical modes. We define semioptical
modes as nonacoustic modes below 20 THz, since contri-
butions to the thermal conductivity from optical modes
above 20 THz are negligible (∼3%). Transverse modes
[47] contribute to the total thermal conductivity significantly
in the frequency region below 8 THz but make up only 20%
of the overall value. Longitudinal modes carry the rest of the
heat and equally contribute to heat conduction above 10THz.
Although modes with frequencies exceeding 20 THz do

not carry heat, they play an important role in thermal
transport by acting as scattering channels for lower-
frequency phonons, as previously reported for optic modes
in Si [48]. Neglecting these modes leads to factor of 2
increases in thermal conductivity, demonstrating their
importance to the phonon scattering phase space.
We also plot the cumulative thermal conductivity versus

mean free path in Fig. 2(c). The figure shows that the
contribution to the accumulation from the longitudinal
acoustic and longitudinal optic modes is similar due to
the near degeneracy of thesemodes. Around 60%of the heat
is carried by vibrations with mean free paths under 100 nm
and nearly all by mean free paths less than 1 μm. This mean
free path distribution is quite different than that in silicon, in
which 40% of the heat is carried by phonons with mean free
paths exceeding 1 μm despite the two crystals possessing
nearly the same thermal conductivity at room temperature.
We now examine the origin of the difference in thermal

conductivity between the quantum and classical calcula-
tions. We first show the radial distribution function of the
atoms in the ensemble at 300 K in Fig. 3(a). Unlike in
covalent crystals with heavy atoms in which zero-point

motion is negligible, here quantum statistics leads to a far
broader distribution of pair distances due to the zero-point
motion. For vibrations involving C─C motions, the differ-
ence between classical and quantum thermal displacement
magnitudes is only about 30%, but for C─H the thermal
displacements including zero-point motion are around 60%
larger and for H─H quantum statistics gives a distribution
that is twice as wide as that of the classical calculation.
Examining the cross section of probability densities
perpendicular to the chain [Figs. 3(b) and 3(c)], we see
that hydrogen experiences larger motions perpendicular to
the bond direction than along it, indicating a weakening of
bond-bending forces. The largest difference in the proba-
bility distribution between Maxwell-Boltzmann statistics
and Bose-Einstein statistics exists in the direction of the
C─H bond. Quantum statistics also affect the angular
distribution of the bonds, for example, the H─C─H bond,
but the effect is less pronounced than for the pair bonds.
To yield more insight into how these differences affect

the thermal conductivity, we examine the phonon frequen-
cies below 8 THz. In Figs. 4(a) and 4(b), we plot histo-
grams of phonon frequencies as a function of the magnitude
of the wave vector q with and without quantum effects. We

(a) (b) (c)

FIG. 3. (a) Radial distribution function at room temperature. Atomic probability distribution (b) with and (c) without nuclear quantum
effects. Zero-point motion increases the thermal displacements for all atoms but particularly for the hydrogen atoms.

(a) (b)

(c)

FIG. 4. Spectral function versus wave vector magnitude q using
(a) quantummechanics and (b) classical statistics. (c) Total and site-
projected phonon density of states. Filled regions correspond to the
hydrogen contribution to the total density of states (solid and dashed
lines). In the quantum case, hydrogen participates in 20% of the
motions in the low-frequency region, while with classical statistics
the fraction is less than 8%.
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observe that the acoustic mode frequencies are qualitatively
different when quantum effects are included. Specifically,
the frequency gap between the transverse and longitudinal
acoustic branches is smaller than in the classical case. As a
result, for the quantum case, additional scattering channels
exist compared to the classical case, leading to more
scattering and lower thermal conductivity.
To demonstrate this point, we look at the species-

projected phonon density of states in Fig. 4(c). Rather
than being relegated to the high-frequency optical modes
that contribute little to thermal transport, hydrogen partic-
ipates in the motion of an unexpectedly large number of
modes below 8 THz, where a large fraction of the heat is
carried per Fig. 2(c). While classical statistics predicts that
the hydrogen atoms participate in less than 8% of the total
vibrational modes at frequencies below 8 THz, quantum
statistics predicts a significantly larger contribution of 20%.
A picture emerges where the large thermal displacements of
hydrogen strongly affect the motions of carbon atoms,
thereby altering the scattering phase space and reducing the
thermal conductivity.
In summary, we present a study of the intrinsic lattice

thermal conductivity for crystalline polyethylene using an
ab initio approach that explicitly accounts for finite temper-
ature and nuclear quantum effects. We obtain a thermal
conductivity of 164 Wm−1K−1 at room temperature,
providing a rigorous upper bound for the intrinsic thermal
conductivity of this molecular crystal. Furthermore, we
show that nuclear quantum motion plays a significant role
in setting the thermal conductivity by changing the
frequencies of the low-frequency vibrations and, hence,
the three-phonon scattering phase space. Our computa-
tional approach paves the way for ab initio studies and
computational material discovery of molecular solids with-
out any adjustable parameters.
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