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We develop a coarse-grained description of the point-vortex model, finding that a large number of planar
vortices and antivortices behave as an inviscid non-Eulerian fluid at large scales. The emergent binary
vortex fluid is subject to anomalous stresses absent from Euler’s equation, caused by the singular nature of
quantum vortices. The binary vortex fluid is compressible, and has an asymmetric Cauchy stress tensor
allowing orbital angular momentum exchange with the vorticity and vortex density. An analytic solution for
vortex shear flow driven by anomalous stresses is in excellent agreement with numerical simulations of the

point-vortex model.
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Introduction.—Topological defects play a key role in the
two-dimensional (2D) superfluid transition [1,2], and in
many out of equilibrium phenomena including phase
ordering dynamics after a quench [3-5] and turbulence
in Bose-Einstein condensates (BECs) [6—13]. Under planar
confinement [14] the collective motion of many interacting
quantum vortices in a superfluid leads to the emergent
complexity of 2D quantum turbulence (2DQT) [15-25].
Experimental advances now allow plane-confined BECs
[26,27], and simultaneous detection of quantum vortex
positions and circulations [28], opening the way to studies
of 2DQT and Onsager vortices [29-36].

In the hydrodynamic regime at low temperature, super-
fluid vortex motion is much slower than the rate of sound
propagation, and a system of many quantum vortices
evolves as an almost isolated subsystem: a vortex fluid.
The point-vortex model (PVM), a central model for studying
2D classical incompressible turbulent flows [29,30,37,38],
describes the dynamics of quantum vortices [39,40], pro-
vided they are well separated. In this regime the vortex core
structure is unimportant, and the coupling to acoustic modes
is relatively weak [41]. Many studies of collective dynamics
of vortices rely on large-scale numerical simulations of the
discrete PVM [42—45]. An alternate approach was initiated
by Wiegmann and Abanov [46], who formulated a hydro-
dynamic description of well-separated vortices of the same
circulation, providing a rigorous starting point for studying
rotating fluids, vortex clusters with a definite sign of
vorticity [47,48], and the connection between vortex fluids
and quantum Hall liquids [49]. A general 2D turbulent flow
or a phase ordering process involves many vortices and
antivortices, motivating a hydrodynamic theory of the
binary vortex system.

In this Letter we develop a hydrodynamic formulation of
systems involving a large number of vortices and antivor-
tices, providing a framework for describing their emergent
collective dynamics at large scales. A system containing
many vortices with mean separation much bigger than the

0031-9007/17/119(18)/185301(7)

185301-1

vortex core size £ can be treated as a fluid on a scale much
larger than &£, and smaller than the system size. We generalize
the coarse-graining procedure proposed for chiral vortex
systems [46] to the binary vortex system by introducing two
hydrodynamical velocity fields via vortex number and
charge currents. The binary fluid obeys a compressible
hydrodynamic equation containing an asymmetric Cauchy
stress tensor and an anomalous stress that is analogous to
viscous stress while conserving energy. A vortex fluid shear
flow driven by the anomalous stress is found, and numerical
simulations of the PVM show excellent agreement with the
analytical solution. Variation of the coarse-graining scale
also demonstrates convergence of many-body dynamics of
the PVM to non-Eulerian hydrodynamics. Dissipation due
to the interaction between vortices and the thermal cloud
generates uphill diffusion of the vorticity at macroscopic
scales. Chiral flow dynamics [46] is recovered as a special
case of the binary fluid.

Two-dimensional hydrodynamics.—The dynamics of
nonviscous incompressible classical fluids in 2D is
described by the Euler equation

1
Diu = ——Vp, V.u=0, (1)
nm

where n is the constant density, u is the fluid velocity, D} =
0, + u - V is the material derivative with respect to u, m is
the atomic mass, and p is the fluid pressure determined by
V. (u-Vu) = —(nm)~'V?p. Taking the curl of Eq. (1), the
Helmholtz equation for the vorticity w = [V x u], is

Diw = 0. (2)
The kinetic energy of the fluid reads [50]
H="" / rfuf =" / Lry®or), ()

where y is the stream function, and u =V x (yZ) and
—V21// = w. Here, 7 is a unit normal vector to the fluid plane.
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For a 2D flow, it is convenient to use complex coor-
dinates z = x + iy, 0, = (0, —i0,)/2 and the complex
velocity u = u, —iu,. In terms of complex notation
Vou=0ua+0u, u-V=ud,+ud:,, o=[Vxu], =
i(Osu—0,u) =2i0>u, and u = 2i0y. We also use sub-
scripts a, b to denoted the Cartesian components of vectors,
and use vector, complex, or component notation where
convenient.

Point-vortex system.—A superfluid containing vortices
with a separation larger than the core size & is nearly
incompressible, away from vortex cores [51]. For a BEC
described by a macroscopic wave function W, the associated
Gross-Pitaevskii equation (GPE) governing time evolution
can be mapped to the form of Eq. (1) in the incompressible
regime (constant density n = |¥|?) [52,53]. The single
valuedness of the wave function W requires that the
circulation of a vortex excitation must be quantized in units
of circulation quantum x = 2z#/m, and the vorticity has a
singularity at the position of the vortex core r;: w(r) =
ko;6(r —r;) with the sign o; = +1. Hereafter, we set
nm = 1 for convenience.

We consider a system containing N, singly charged
quantum vortices and N_ antivortices. The total number
of vortices is N =N, + N_ and the vortex with sign
o; 1s located at r;. The fluid velocity generated by
these quantum vortices far from the fluid boundary is
completely determined by the vorticity: u=2i0,y=
Q2zi)™ [P o(r)/(z—2) ==Y |iyo;/(z—z,), where
the stream functlon of the fluid is w(r)=
—y> oilog|(r—r;)/¢|, and the vorticity is w(r) =
2ryy ;0:6(r —r;). Here, ¢ is a length scale introduced
to ensure the correct dimension, and y =«/27z is a
convenient unit of circulation. As shown by Helmbholtz,
the above fluid velocity u is a singular solution of Eq. (2).
A quantum vortex generates a flow in the bulk fluid, while
the vortex core is a pointlike particle and has its own
dynamics driven by the flow generated by the other
vortices. The dynamics of the vortex cores has a
Hamiltonian structure:

dZi - 87‘[ dpl B 8H

2o , -2 4

dt  Op; dt 0z; “)

with canonical momentum p; = izyo;Z; and Hamiltonian
H=—-ny Za log iy (5)

i#]
The formal solutions of Eq. (4) are the Kirchhoff
equations [54]

dz; N iyo;

_— vi’ Ui = - ——_ .

dt ]ﬁélzl(t) - Zj<t>
Using the vortex degrees of freedom, the kinetic energy of

the fluid H = 'H + E,.;, where H is the energy of inter-
action between vortices, and E; = Nry>log(£/&) is the

(6)

total self-energy. The PVM can be seen as a limiting case of
the vortex method [55,56] and well approximates incom-
pressible classical fluids with « determined by the injec-
tion scale.

Vortex fluid hydrodynamics.—For large N, the emergent
collective dynamics of the discrete vortex system [Eq. (6)]
can be described by a few hydrodynamic variables. By
coarse-graining microscopic vortex distributions over
patches containing many vortices, we derive a hydrody-
namic formulation of the PVM, describing the vortex
dynamics on scales greater than the patch scale. The core
size £ is much smaller than the patch scale, and serves as a
natural ultraviolet cutoff.

Under Hamiltonian evolution, conservation laws ensure
the following continuity equations

Op =Y 0,6(r—x;(1)) = =(0.1, + 0:J,) = =V - J,..
(7)

00 = 0:0,8(r —r;(t)) = —(0,J, +0,J.) ==V -J..
(8)

where the vortex number density p(r) = > ;6(r —r;), the

vortex charge density o(r)= (2zy)'w, and

J. = Zé(r -1;)(0;v;),

i

> i0:0(r—r;)=
Iy = 25(1' v (9)

are the currents for charge and number, respectively. The
coarse-grained vortex charge velocity field w and vortex
velocity field v are defined according to the hydrodynamic
relations J,. = pw and J,, = pv [57]. Using the identity

0yl ()

7
with Eq. (6), we can rewrite J,. to obtain an important
relation between the vortex charge velocity w, and the fluid
velocity u, given by

pw = ou —2nid p (11)

with anomalous kinetic coefficient # = y/4; here we have
used 0:(1/z) = z6(r) and [0, 0:](1/z) = 0. A fundamen-
tal relation linking the vortex velocity field v to the fluid
velocity u can also be derived by decomposing J,, [58],
to give

pv = pu —2ind.o. (12)
The two velocity fields are related by
pw = ov — inp~ (d.p* = 9.6%), (13)

and the vorticity of the vortex velocity field v, w, =
i(0:v — 0.7), has the anomalous correction
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w,—w=Vx(v-—u)=nV-(p~'Vo). (14)

In the hydrodynamic formulation the quantities p, o, J,,
and J, represent averages of the corresponding microscopic
quantities over patches, giving smooth coarse-grained
quantities on the patch scale [59].

The relation (12) links the superfluid velocity field that is
irregular at a vortex core to a vortex fluid velocity field that
is regular. In other words, the velocity of a vortex at
position r is the fluid velocity excluding the flow generated
by the vortex itself at r. The regularization involves
subtracting the singular term, namely, the pole at the vortex
core. For a single vortex at the origin the superfluid velocity
u = —iyo;/z and 2ind.c/p = —4inoc;/z; Eq. (12) yields
v =u—2ind,06/p = 0. The correction cancels out the
superfluid velocity field due to the local vortex, giving
the physical result that a vortex does not move under the
action of its own velocity field. Equation (11) has a similar
interpretation.

The binary vortex fluid is compressible:

Vv =2%id,(p7'0.0) —H.c.] = —nV x (p~'Vo) # 0,
(15)

as also seen from V-w = a0 (c/p) + ud:(c/p) # 0. In
the chiral limit, 6 = p,w = v and V - v = 0 [46]. The chiral
vortex fluid is rigid, as the energy cost to compress a vortex
fluid containing N vortices scales as N> due to repulsive
interactions between like-sign vortices. For a binary vortex
fluid, the presence of two opposite sign vortices softens the
vortex fluid such that gapless excitations can occur, making
the vortex fluid compressible.

Anomalous Euler equation.—Using Eqs. (8), (13), (15),
o satisfies the vortex fluid Helmholtz equation

Dio =0, (16)

and vortex charge is conserved, moving with the
vortex velocity; use of Eq. (12) shows consistency with
Helmholtz’ equation for the fluid, Eq. (2). A straight-
forward calculation [58] yields the anomalous Euler
equation of the vortex velocity field v

8t(p1}) + 8ZTZZ + 827 +paz(2p) =0, (17)

where 7 : = pv? + 16n°76° + 47760 (p~'0,0) and T =
pvv + 40?60, (p~'0,0) — 4nicd.v are complex compo-
nents of the momentum flux tensor. Equation (17) does
not explicitly contain w and Egs. (7), (16), and (17) fully
describe the binary vortex fluid. In Cartesian coordinates
Eq. (17) becomes

0i(pvy) + 0T oy + pOyp = 0, (18)

where the momentum flux tensor 7 ;, = pv, v, — I, [61]
with the emergent Cauchy stress tensor

g = -0t — 8}12710'25ab - ’1208b (p_laao-)7 (19)

reflecting the macroscopic effects of the topological nature
of quantum vortices. The anomalous stress

Txy = Tyx = 'I(axvx - ayvy)’

Tox = —Tyy = _'l(axvy + ayvx) (20)
does not cause energy dissipation and is formally identical
to that of the chiral vortex fluid [46]. The anomalous stress
7, vanishes in uniform rotation with angular velocity Q,
where v = —QiZz. Although there is no frictional viscosity
in the binary vortex fluid, the shear stress (I1,, # 0 for
a # b) is nonvanishing, induced by gradients of p and ¢ and
the anomalous stress 7,,;,. A similar situation can be found
in the GPE when quantum pressure is important [62].

A conspicuous feature of the Cauchy stress tensor I,
for the binary vortex fluid is that it is asymmetric, with a
nontrivial commutator linking to the compressibility

,, -1, = —onV - v. (21)

Note that under the transformation x <> y, the velocity
vy = —vy and vy, = —v,, and hence V-v — —V . v. For
the chiral fluid 6 = p, V - v = 0 and I, is symmetric [46].
The local mechanical pressure of the binary vortex fluid is
given by the normal stress:

1 1
P = =5 u(lyp) = 8°70” + 216V - (p7' Vo). (22)

Angular momentum.—The canonical angular momentum
of the point-vortex system that is associated with rotational
symmetry reads L¢ =Y "Nr;xp;=—zy)_,0:r?, and is equiv-
alent to the fluid angular momentum L, = [d?rr x u =
—1/2 [ d®rr*w. The canonical angular momentum L¢ is
conserved as long as the system has rotational symmetry. We
can also consider the orbital angular momentum (OAM) of
vortices L?=>"Nr;xv;. For a chiral vortex system (¢; = 1),
LY =2yN(N —1). In terms of the hydrodynamic field v,
L’ = [drL" with L'=rx (pv). In Cartesian coordinates
LY, =p(x,v,—x,v,). Using Eq. (18), we obtain the con-
tinuity equation

oLy,

7 + 80Mabc = Hba - Hab (23)

with angular momentum flux tensor M ;. =x,7 . =X 7 40
indicating that the OAM is conserved if and only if
I1,, = I1,,. Since I1,, is asymmetric for the binary vortex
fluid, the OAM is not conserved regardless of the symmetry,
consistent with the property of the corresponding discrete
point-vortex system [63]. For the incompressible chiral
vortex fluid (V - v = 0), the OAM is conserved. The diver-
gence V - visasource termin Eq. (23), and 77 can be seen as a
rotational viscous coefficient mediating the exchange
between the vortex fluid OAM and the internal vorticity
and density degrees of freedom. The conserved OAM
of the binary point-vortex system can be constructed by
considering the sign-weighted OAM L"=Y Nr;x (6,v;)=
27[(>=,6;)*>—=N]. In the chiral case L"=L" and L"=-2yN
for the neutral system; in terms of w, L" = f d*rr x (pw).
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Vortex fluid Hamiltonian.—Since o;v; < dp;/dt and
>6(r—r;))0H/0z; = > ;6(r — r;)o;v;, the vortex charge
velocity w satisfies the canonical equation —izypw =
60,(6Hp,6]/60) + p0.(6H[p,6]/p), which gives the
Hamiltonian of the binary vortex fluid [64]

H[p, o] = Hlo] — 8zn? / d*rplog(?p).  (24)

Here, H[o| is the fluid Hamiltonian (3), and the second
term is the self-energy of vortices [65]. The Hamiltonian
(24) is the hydrodynamic formulation to the discrete
point-vortex Hamiltonian (5). It can be decomposed as
Hlp, 0] = Hiin + Hiy + Hyy with vortex fluid kinetic
energy Hy, = 1/2 [d°r|v|>, “internal energy” Hj, =
n?/2 [ dr(p~2|Vo|*> — 16aplog(¢?p)), and a “spin-orbit
coupling” term Hg, = —n [ d’rp~'v- (2 x Vo) that cou-
ples vortex distribution energy to vortex fluid kinetic
energy.

Vortex shear flows.—We consider a static vortex flow
with v, =0, d,v, =0, and 0,6 = 0 in a neutral vortex
system of constant density p = p,. For such a static
flow Eq. (18) reduces to 0,7 4, = 9p(povavy — ) =
0,I1,, = 0[66], where the only nontrivial component reads
(0,60, + 60})v, + n[16760, + py' (0,603 + 685)|o = 0,
indicating that v is completely determined by the emergent
Cauchy stress tensor including the anomalous stress 7,;,. An
exact shear flow solution to Eq. (18) can then be found:

o(x,y) = ogsin(ay), v = (vgcos(ay),0), (25)

where vy = anoy(8za~> — pg'), and a is a real parameter.
Numerical simulations of the PVM with N = 9522 [67] in a
doubly periodic square box with side length L = 6 x 10°¢
[68] show excellent agreement with the prediction of
Eq. (25) (see Fig. 1). Good agreement is also seen for N =
450and L = 300¢, being nearly within reach of current BEC
experiments [21,26,27]. There may also be more exotic
vortex flows with an enhanced anomalous term in Eq. (12),
as may be caused by a gradient discontinuity in o.

Dissipation and annihilation.—To model dissipation due
to interaction between superfluid vortices and a noncon-
densed thermal cloud [71], we consider a dissipative point-
vortex model [24,72—-74] of the form dz;/dt = v; + in‘o;v;
[75], where the dimensionless dissipation rate #* measures
energy damping [78]. In the presence of dissipation,
the continuity equations (7) and (8) still hold subject to
the substitutions J,—J,=J,—n*ZxJ. and J.—»J.=J.—
n*2xJ,. The dissipative Helmholtz equation is Dlc=
—n* (8anpo+nV26—vxVp), where v=v—n*yVliogp;
the terms —8znn*po and n*v x Vp describe damping and
transverse damping, respectively. The negative sign in front
of the diffusion term induces uphill diffusion of &, con-
centrating vorticity, and may contribute to inverse energy
cascades and vortex clustering processes [24.,44].

Various forms of vortex number loss can modify the
Hamiltonian theory, including vortex annihilations due to

>
-0.4 n n n L L
3000 2000  -1000 0 1000 2000 3000
y
FIG. 1. The initial vortex configuration is obtained by samp-

ling vortex coordinates according to the distribution ¢ =
oo sin(2xy/L) with y € [-L/2,L/2], and 6y = p,. We measure
length L, velocity », and time ¢ in units of &, x/&, and & /k,
respectively. Panels (a), (b), and (c) show the evolution of point
vortices (red: o; = 1; green: 6; = —1) at t = 0, 50, 150, respec-
tively. In each plot, x and y range from —103 to 10° and =3 x 103
to 3 x 10%. The 138 vortices initially located at x = 0 are labeled
blue and their velocities are used to characterize the shear flow.
(d) Comparison between Eq. (25) (red) and simulations (circles).
Velocities of the blue colored vortices are obtained as averages
over ten runs (bottom). By averaging the velocities over the
increasing bin size L/{138,80,20} (from bottom to top), the
coarse-grained vortex velocities approach the analytical result
(25). For clarity the results for different bin sizes are vertically
shifted by 0.2. The inset in panel (d) shows the estimated values
(circles) of v, via fitting to the numerical data in a single run for
each L € {1,2,...,10} x 103, where a = N/2z—1/4; also
shown is the analytical result (blue). In our sampling the constant
density is anisotropic, with the density along the y axis twice that
of the density along the x axis.

collisions, and dissipative vortex dipole decay or boundary
loss. For a low temperature BEC containing many vortices
the dissipation rate is small, n* = 10~* [18], and annihi-
lations due to collisions are the dominant limitation for the
Hamiltonian PVM approach. However, their influence is
regime dependent [79] and can be negligible for highly
vorticity-polarized states, examples of which are the vortex
shear flow (see Fig. 1) [87], the enstrophy cascade in
decaying 2DQT [45], and Onsager clustered states
[25,33,88]. In the vortex dipole gas regime, dipole-dipole
collisions are frequent and the theory is valid for times
shorter than the dipole lifetime. The characteristic quantities
are the collision cross section o, ~ &, the root-mean-square
dipole velocity v, ~ kd~" (for d < 10& the Jones-Roberts
soliton [89,90] forms), the mean free path £,, ~ (c.pq)~",
and the mean free time 7 = ¢,,/vms ~ 10/(kp,), where
pq = p/2 is the dipole density. The average total collision
frequency per unit area is then 77!p,, and assuming that
every collision annihilates two vortices, we find the rate
equation dN/dt = —I", N?, where the two-body decay rate

185301-4



PRL 119, 185301 (2017)

PHYSICAL REVIEW LETTERS

week ending
3 NOVEMBER 2017

I, =2t7!'p,A and A is the system area. Such a decay
behavior has recently been reported [21]; using their
experimental parameters we estimate I', = 0.054 s~!, close
to the rate observed for the highest temperature. For the same
parameters, the Hamiltonian PVM is a valid description up
to the mean free time (lifetime) of a dipole, 7 ~ 300 ms [91].
For regimes at higher vortex energy than the dipole gas limit,
the decay rate per vortex can be strongly suppressed [33].
Including vortex-antivortex annihilations into the hydro-
dynamic theory systematically is an important direction to
explore in the future.

Conclusion.—Our hydrodynamical formulation of the
point-vortex model reveals that the collective motion of many
vortices emerges as a binary vortex fluid with rich phenom-
enology including an asymmetric Cauchy stress tensor and
compressible flow. Examples of the former are relatively rare,
and are associated with interactions between internal degrees
of freedom and the bulk fluid flow, as occurs in liquid crystals
[95]. Excellent agreement between the analytic solution for
vortex shear flow and the numerical simulations demonstrates
the validity of the coarse-grained approach to collective vortex
motion. The compressible vortex fluid may support density
waves; however, global plane waves appear as excitations on
top of nontrivial static background flows and are thus likely to
be transient in general. The hydrodynamic theory suggests
many areas for exploration including local density and
vorticity excitations, regular vortex flows, connections with
classical flows, and states of fully developed two-dimensional
quantum turbulence.
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