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Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited
by quantummeasurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty
of any parameter scales at best as 1=T, where T is the duration of the experiment, recent theoretical works
have predicted that explicitly time-dependent Hamiltonians can yield a 1=T2 scaling of the uncertainty for
an oscillation frequency. This quantum acceleration in precision requires coherent control, which is
generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with
superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal
frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates
a fundamental quantum advantage for frequency estimation.
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The ability to sense more accurately has historically been
the basis of many of our scientific advances and technologi-
cal innovations. In particular, precision measurements have
been instrumental in advancing our knowledge of funda-
mental physical laws [1–4]. Notably, frequency measure-
ments have been essential to experimental tests of general
relativity, the standard model of particle physics, and
quantum mechanics and are the practical foundation of all
time keeping devices. The precision of measurements is
ultimately governed by the fundamentally probabilistic
nature of quantum measurements, which arises most basi-
cally in the Heisenberg uncertainty principle. Traditionally,
frequency measurements, such as are conducted with atomic
clocks [5–7], are associated with the measurement of the
energy difference E between two eigenvalues of a static
HamiltonianH, and the frequency uncertainty arises from the
energy-time uncertainty principle [8] δω¼δE=ℏ¼1=ð2TÞ,
whereT is the time of the experiment. New situations arise in
frequency metrology when one considers instead time-
dependent Hamiltonians, where the precision of frequency
measurements can be optimized with additional control.
In metrology, one seeks to determine a parameter g from

repeated measurements that naturally follow a probability
distribution pgðXÞ, where X is some random variable. For
large data sets, the Cramér-Rao bound [9] gives a universal
limit for the mean squared deviation of the parameter:

hδ2ĝi ≥ 1

vIg
; ð1Þ

where v is a measure of the amount of data, ĝ is an unbiased
estimator of the parameter g formed from measurement

data, and Ig ¼
R
pgðXÞ½∂g lnpgðXÞ�2dX is the Fisher

information [10], which characterizes the amount of
information about the parameter g that is contained in
the data. Therefore, the Fisher information is a natural
measure of how optimal a given measurement strategy is
for determining the parameter g with minimal uncertainty.
For quantum parameter estimation, measurements on

quantum states jψgi are used to find the probability
distribution pgðXÞ. In this case, the Fisher information in
the quantum state is given by [11,12]

IðQÞ
g ¼ 4ðh∂gψgj∂gψgi − jhψgj∂gψgij2Þ; ð2Þ

which maximizes the classical Fisher information in the
measurement results on the state over all possible types of
quantum measurements. The quantum Fisher information is
a measure of the distinguishability of two states jψgi and
jψgþdgi, and with this formulation, it is clear that some
quantumstates garnermore quantumFisher information than
others. In particular, nonclassical correlations can enhance
measurement sensitivities. The use of such nonclassical
resources in measurement has been widely studied
[13–15] and applied in several metrological areas including
imaging [16], gravitational waves [17], and magnetometry
[18]. Much of this research has focused on the scaling of the
quantum Fisher information with the number N of quantum
systems; whereas uncorrelated systems lead to the standard
quantum limit ∝ N, appropriate quantum correlations can
lead to the Heisenberg scaling ∝ N2 [15].
Here, we focus rather on how the quantum Fisher infor-

mation for a single quantum system scales with time [19].
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If, for example, the parameter to be estimated is a multipli-
cative factor [20] on a static Hamiltonian, Hg ¼ gH0, then,
given that unitary evolution for a time T is described by
Ug ¼ expð−igH0TÞ, the quantum Fisher information scales
in timeas Ig ∝ T2 [20].However, if theHamiltonian is instead
time dependent [14,21], the quantum Fisher information may
exceed this scaling for certain parameters, reaching a scaling
of Ig ∝ T4 for estimating the frequency of an oscillating
Hamiltonian under optimal coherent control [22]. Very recent
experiments [23–25] in magnetic-field-sensing NV centers
have demonstrated that using a hybrid quantum-classical
strategy of estimating a local magnetic field value with a
quantum technique, repeated in time, together with a classical
Fourier transform can achieve a Fisher information of the
frequency scaling as T3. In this Letter, we experimentally
demonstrate T4 scaling of the quantum Fisher information in
the estimation of a Hamiltonian oscillation frequency for a
pseudo-spin-half system. This quantum enhanced scaling has
been proved [22] to be the best allowed by quantum
mechanics in the kind of system we consider in this work.
This improved scaling is achieved through adaptive optimal
control where an additional control Hamiltonian that depends
on the estimated parameter is applied to the system to enhance
sensitivity.We show that theT4 scaling is robust against small
variations in the control Hamiltonian, thus allowing for
adaptive control.
To illustrate how optimal control can be used to maximize

the quantum Fisher information, we consider a time-depen-
dent Hamiltonian imposed on a two-level quantum system
HωðtÞ ¼ Aℏ sinðωtÞσz=2, describing the periodic modula-
tion of the energy levels of the system with amplitude A as
shown in Fig. 1(a). Our focus is to maximize the quantum
Fisher information of the modulation frequency ω, that is, to
minimize the overlap of two quantum states jψωi and
jψωþδωi after time evolution under the Hamiltonian for time
T. We will show that the optimal choice of quantum states
is a superposition of energy eigenstates ðj0i þ eiϕj1iÞ= ffiffiffi

2
p

,

which accumulate different phases ϕωðTÞ under the
Hamiltonian evolution.
To formalize our discussion of the quantum Fisher infor-

mation, we reformulate Eq. (2) as IðQÞ
ω ¼ 4Var½hωðTÞ�jψ0i,

where hωðTÞ¼iU†
ωð0→TÞ∂ωUωð0→TÞ,Uωð0 → TÞ is the

unitary evolution of the initial state jψ0i under the
Hamiltonian, and Var½·� represents the variance. In this form,
we can see that the quantum Fisher information is related to
the squared difference between the minimum and maximum
eigenvalues of hωðTÞ.
To determine the eigenvalues of hωðTÞ, we break the

unitary evolution Uωð0 → TÞ into infinitesimal time inter-
vals as discussed in Ref. [22] and consider the eigen-
values of hωðtÞ versus the time. In the current case, the
Hamiltonian commutes with itself at different times, so we
arrange the system to be in a superposition of the
eigenstates of ∂ωHωðtÞ=ℏ, such that the eigenvalues main-
tain maximal separation. These eigenvalues simply evolve
as μ�ðtÞ ¼ �At cosðωtÞ=2. In Fig. 1(b), we sketch μ�ðtÞ.
The quantum Fisher information (QFI) about the frequency
ω associated with an evolution for time T is given by

IðQÞ
ω ¼

�Z
T

0

½μþðtÞ − μ−ðtÞ�dt
�

2

; ð3Þ

which increases as T2. Figure 1(c) displays how additional
control at the crossing points can be used to dramatically
enhance the QFI. By applying a control to guide the qubit
along a trajectory that maximizes the integral (3), the QFI
can increase instead as T4 as shown in Fig. 1(d). The
intuitive reason for the T4 scaling versus the T2 scaling is
that, for time-independent Hamiltonians, two nearby quan-
tum states corresponding to different values of the param-
eter can only diverge from each other with constant
velocity, whereas in time-dependent Hamiltonians, they
can accelerate away from each other, giving greater
quantum distinguishability of the states in the same period
of time [22,26,27].

(a) (b)

(c)

(d)

FIG. 1. Frequency estimation of a time-periodic Hamiltonian. (a) The experiment consists of a transmon qubit dispersively coupled to
a waveguide cavity. The qubit is subject to a time-dependent Hamiltonian HωðtÞ, and the task is to estimate the frequency ω. (b) The
eigenvalues μ� of ∂ωHωðtÞ=ℏ. The quantum Fisher information is related to the integral of μþðtÞ − μ−ðtÞ, which is alternately positive or
negative. (c) A control HcðtÞ is used to guide the qubit evolution such that μþðtÞ and μ−ðtÞ are maximally separated. (d) The scaling of
the quantum Fisher information for the uncontrolled and controlled measurement evolution, showing scaling as T2 and T4, respectively.
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We now turn to the experiment, where we realize the
optimal control depicted in Fig. 1(c). The experimental setup
consists of a superconducting transmon circuit [28] that is
dispersively coupled to a waveguide cavity [29]. The qubit
system is comprised of the lowest two levels of the circuit and
is described by the Pauli spin operators σx, σy, and σz. The
dispersive interaction between the qubit and the cavity,
described by the Hamiltonian Hint ¼ −ℏχn̂σz, allows for
the rapid, quantum nondemolition measurement of the qubit
in the energy basis by probing the cavity resonance with
microwave photons. Here χ=2π ¼ −0.5 MHz is the disper-
sive coupling rate, and n̂ is the cavity photon number
operator. To create the time-dependent Hamiltonian
Hω ¼ Aℏ sinðωtÞσz=2, we drive the cavity with detuning
Δ=2π ¼ 37 MHz to populate the cavity with an average n̄ ¼
n̄0 þ A sinðωtÞ=2χ photons. The mean photon number n̄0 ¼
6.4 results in an ac Stark shift of 6.4MHz and themodulation
amplitude A=2π ¼ 0.60 MHz.
We first demonstrate the standard T2 scaling of the

quantum Fisher information that is obtained without
Hamiltonian control. An equal superposition state ðj0i þ
eiϕj1iÞ= ffiffiffi

2
p

maximizes the QFI, and the measurement
protocol is simply a Ramsey sequence as depicted in
Fig. 2(a). A π=2 pulse is applied, followed by waiting
for a time T, followed by a second π=2 pulse and projective
measurement in the σz basis. The axis of the second π=2
rotation is adjusted such that the projective measurement in
the energy basis accumulates maximal information about
the phase of the qubit. The QFI is given in terms of the

Bures distance [30] ds2 ¼ 2ð1 − jhψωjψωþdωijÞ, where

IðQÞ
ω ¼ 4ds2=dω2. As such, we vary ω by a small amount

to determine the slope [Fig. 2(c)], where IðQÞ
ω ¼ ðdϕ=dωÞ2.

The frequency sensitivity is ultimately governed by the QFI
and the phase variance, which as shown in Fig. 2(d) is given
by the standard binomial error δϕ ¼ 1=

ffiffiffiffiffiffiffi
4N

p
due to

projection noise, resulting in a cumulative frequency

information of NIðQÞ
ω . As displayed in Fig. 2(e), the

frequency sensitivity improves as ω=ðATÞ, (QFI ∝ T2)
until dephasing of the qubit, characterized by T�

2 ¼ 4 μs,
degrades the sensitivity.
The key idea behind optimal coherent control is to

impose an additional time-dependent Hamiltonian HcðtÞ to
maximize the difference of the eigenvalues of hωðTÞ. In
Fig. 2(b), we display this optimal Hamiltonian control,
which consists of discrete unitary π rotations applied to
the qubit at specific optimal times: These are applied at the
antinodes of the estimated Hamiltonian rather than at the
nodes as is commonly seen in dynamical decoupling
sequences [26]. In contrast to dynamical decoupling pulses,
whose object is to refocus diverging states and prolong
coherence, our control pulses do the opposite: The objec-
tive is to separate as quickly as possible two quantum states
corresponding to nearby values of the frequency in order to
improve our resolution of that parameter; hybrid schemes
have very recently been proposed [27]. In Fig. 2(e), we
show how under optimal control the frequency sensitivity
attains the ultimate limit δω=δϕ ¼ π=ðAT2Þ for short times

(a) (c)

(d)

(e)

(b)

FIG. 2. Frequency metrology with optimal control. (a) Schematic of the estimation task: The qubit is prepared in a superposition of
energy eigenstates ðj0i þ j1iÞ= ffiffiffi

2
p

, followed by an interaction with a time-periodic Hamiltonian with frequency ω for a certain time,
followed by a π=2 pulse and projection in the σz basis to determine the acquired phase. (b) The energy eigenvalue difference of
Hamiltonian HωðtÞ is sketched in time, together with the optimal coherent control pulses (repeated π pulses at the antinodes of the
oscillating Hamiltonian) designed to acquire maximum frequency information. This results in the effective total Hamiltonian HeffðtÞ.
The acquired phase is the time integral of this function. (c) The frequency sensitivity is determined by varying ω, and a linear fit
determines dϕ=dω. (d) The phase uncertainty δϕ versus experimental repetition number N shows that the phase uncertainty is given by
the binomial error 1=

ffiffiffiffiffiffiffi
4N

p
(solid line). (e) The frequency sensitivity for the uncontrolled (red circles) and optimal control (blue

diamonds) attains the respective limits (solid lines) for times shorter than the decoherence time. The error bars indicate the estimated
standard deviation of slope dω=dϕ from the linear regression fit as in panel (c). (e) (Inset) The quantum Fisher information associated
with a given measurement protocol (uncontrolled, red; controlled, blue), determined from the slope of the acquired phase versus
frequency is displayed on a log-log plot versus the time.
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and yields better sensitivity over the no-control case as long
as ωT > π. This corresponds to a T4 scaling of the QFI. At
long times, decoherence of the qubit causes the QFI to
decrease due to the increasing overlap of the states jψωi
and jψωþdωi.
The optimal Hamiltonian control yields a T2 improve-

ment over the QFI obtained with a standard Ramsey
measurement. Given a finite time resource in metrology,
such as the finite T�

2 time of the qubit, this yields a
substantial improvement in QFI, amounting to a factor
of 740 in this experimental demonstration.
In contrast to recent work [23,24], where T3 scaling of

the QFI has been observed for times limited only by the
stability of an external reference, the T4 scaling observed
here is limited to times T < T�

2. If we consider sensing for a
duration longer than T2, the optimal approach is to utilize
repeated, back-to-back measurements each with duration
T2. By taking advantage of the fact that these repeated
measurements sample the signal at different times, a T3

scaling of the QFI for the total signal sampling time is also
possible with our approach but with an optimized prefactor.
Having demonstrated such a significant improvement in

the scaling of the quantum Fisher information with time, it is
worth inquiring as to whether other Hamiltonian parameters
can be estimatedwith such precision. For example, could the
QFI associatedwith the amplitude IðQÞ

A of the time-dependent
Hamiltonian also achieve such scaling or at least an improve-
ment under optimal control compared to the uncontrolled
case? To address this, we again consider the eigenvalues of
hA, μ� ¼ � sinðωtÞ=2, which do not increase in time. As is
well known from work with nitrogen-vacancy spin sensing
[31–35], in this case the optimal control strategy is again to
apply π rotations, but this time at nodes of the Hamiltonian,
and yields an overall T2 scaling of the quantum Fisher
information as we discuss in Supplemental Material [36].
This is an improvement over the no-control case, where the
maximum quantum Fisher information does not increase for
longer interaction times.
We note that the optimal control needed to obtain the

enhanced precision of the frequency depends on knowledge
of the phase and frequency, which is itself the parameter to
be estimated. Therefore, in general, we must apply adaptive
control [37–40] where first some crude knowledge of the
parameter is obtained without control, which is then used in
the control Hamiltonian to obtain a more precise estimate
of the parameter, which is fed back to adjust the coherent
control in an adaptive loop until the optimal arrangement
is converged upon. One might worry that the T4 scaling is
so sensitive to the matching of the time-dependent
Hamiltonian and control that the T4 scaling is difficult
to achieve in practice. The degradation of the QFI due to
frequency mismatch between the control and the parameter
was analyzed for the case of a rotating magnetic field in
Ref. [22], and, by applying a similar analysis here, we find
that the QFI in the presence of a frequency mismatch Δω is

to leading order IðQÞ
ω ¼ A2T4=π2ð1 − Δω2T2=2Þ. Because

the correction grows as T2, an iterative procedure is
required to refine the control frequency. The requirements
on matching the phase of the control leads to a correction to
the QFI proportional to ð1 − Δθ2Þ, which depends only on
the phase mismatch Δθ and does not grow with time [36].
In Fig. 3, we show the experimentally obtained quantum
Fisher information for different mismatches between the
phase and frequency of the control Hamiltonian. As shown
in Fig. 3(a), the QFI reaches a maximum when the control
is matched to the modulation frequency ω with a vanishing
phase offset. Figure 3(a) also highlights how this control
landscape can be mapped without a knowledge of the
parameters that are to be estimated.
Figures 3(b) and 3(c) display the QFI versus the

frequency and phase mismatch in detail. For the 1.25 μs
interaction time considered here, the uncontrolled fre-
quency and phase estimation based on N ¼ 100 exper-
imental repetitions (used to reduce the phase uncertainty) is
sufficient to find the maximum in the QFI available with
optimal control. Therefore, the robustness of the optimal
control improvement in QFI to variations in the control
parameters is sufficient to allow adaptive control to rapidly
converge to the optimal values. In fact, in Ref. [22], it was
proved that the number of iterations required to approach
the maximum sensitivity grows only as a double logarithm
of the total time T, and, in Supplemental Material [36], we
discuss how an iterative procedure can be used to adap-
tively improve the frequency precision.
In quantum enhanced metrology, one seeks to take

advantage of quantum properties to maximally utilize the
available measurement resources. For parallel resources,

FIG. 3. Optimal control landscape. (a) Color plot of the QFI as
two control parameters are swept for T ¼ 1.25 μs: the phase
difference between the control π pulses and the periodic Ham-
iltonian modulation (x axis) and the duration Td between the π
pulses (y axis) as specified by the control frequency ωc ¼ 2π=Td.
The phase difference has been shifted slightly to account for a 6-
ns delay between the control pulses and the periodic Hamiltonian.
(b),(c) Line cuts through the control landscape [locations in-
dicated as dashed red lines in (a)] show that for small parameter
mismatches the QFI is still significantly greater than the uncon-
trolled case (red line). The blue regions show the parameter
uncertainty based on an uncontrolled estimation using N ¼ 100
experimental repetitions.
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such as the number of quantum systems, entanglement can
be utilized to achieve Heisenberg scaling. We have dem-
onstrated how quantum coherence, optimally harnessed
through coherent control, can maximally utilize the serial
resource: time. It is theoretically possible to combine both
the serial and parallel resources which would give the best
case quantum precision. The advantages conferred in
frequency metrology with time-dependent Hamiltonians
opens new horizons in precision measurement and time
keeping.
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