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Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum
circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the
errors in the computation are introduced. Near-term applications of early quantum devices, such as
quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence
and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy
circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources,
so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero
noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson’s
deferred approach to the limit. The second method cancels errors by resampling randomized circuits
according to a quasiprobability distribution.
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Introduction.—From the time quantum computation
generated wide spread interest, the strongest objection to
its viability was the sensitivity to errors and noise. In an
early paper, Unruh [1] found that the coupling to the
environment sets an ultimate time and size limit for any
quantum computation. This initially curbed the hopes that
the full advantage of quantum computing could be har-
nessed, since it set limits on the scalability of any
algorithm. This problem was, at least in theory, remedied
with the advent of quantum error correction [2–4]. It was
proven that if both the decoherence and the imprecision of
gates could be reduced below a finite threshold value, then
quantum computation could be performed indefinitely
[5,6]. Although it is the ultimate goal to reach this threshold
in an experiment that is scalable to larger sizes, the
overhead that is needed to implement a fully fault-tolerant
gate set with current codes [7] seems prohibitively large
[8,9]. In turn, it is expected that in the near term the
progress in quantum experiments will lead to devices with
dynamics, which are beyond what can be simulated with a
conventional computer. This leads to the question: what
computational tasks could be accomplished with only
limited, or no error correction?.
The suggestions of near-term applications in such

quantum devices mostly center around quantum simula-
tions with short-depth circuit [10–12] and approximate
optimization algorithms [13]. Furthermore, certain prob-
lems in material simulation may be tackled by hybrid
quantum-classical algorithms [14]. In most such applica-
tions, the task can be abstracted to applying a short-depth
quantum circuit to some simple initial state and then
estimating the expectation value of some observable after
the circuit has been applied. This estimation must be
accurate enough to achieve a simulation precision compa-
rable to or exceeding that of classical algorithms. Yet,

although the quantum system evolves coherently for the
most part of the short-depth circuit, the effects of
decoherence already become apparent as an error in the
estimate of the observable. For the simulation to be of
value, the effect of this error needs to be mitigated.
In this Letter we introduce two techniques for quantum

error mitigation that increase the quality of any such short-
depth quantum simulations. We find that the accuracy of
the expectation value can be increased significantly in the
presence of noise. We are looking for error mitigation
techniques that are as simple as possible and do not require
additional quantum resources. Both techniques require that
some noise parameter taken together with system size and
circuit depth can be considered a small number. The first
scheme does not make any assumption about the noise
model other than it being weak and constant in time. In
comparison, the second scheme can tolerate stronger noise;
however, it requires detailed knowledge of the noise model.
Extrapolation to the zero noise limit.—It is our goal to

estimate the expectation value of some quantum observable
A with respect to an evolved state ρλðTÞ after time T that is
subject to noise characterized by the parameter λ in the limit
where λ → 0. To achieve this, we apply Richardson’s
deferred approach to the limit to cancel increasingly higher
orders of λ [15].
Although gates are typically used to describe quantum

circuits, for our analysis it is more convenient to consider
the time-dependent Hamiltonian dynamics implementing
the circuit. The time-dependent multi-qubit Hamiltonian is
denoted by KðtÞ. It can be expanded into N-qubit Pauli
operators Pα ∈ h1; Xj; Yj; Zjij¼1…N , where Xj, Yj, Zj acts
as a single-qubit Pauli matrix on site j and trivially
elsewhere. We allow for time-dependent coupling coeffi-
cients JαðtÞ ∈ R. The circuit is encoded as KðtÞ ¼P

αJαðtÞPα. The total evolution of the open system with
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initial state ρð0Þ will be described by an equation of the
following form:

∂
∂t ρðtÞ ¼ −i½KðtÞ; ρðtÞ� þ λL½ρðtÞ� ð1Þ

for time t ∈ ½0; T�. We do not specify the exact form of the
generator LðρÞ but only require that it is invariant under
time rescaling and independent from the parameters JαðtÞ
in KðtÞ. The noise term LðρÞ could be given as a Lindblad
operator, or it could correspond to a Hamiltonian that
couples to a bath to model non-Markovian dynamics.
We ask that there is a parameter λ ≪ 1 that indicates
a weak action of the noise and that we can bound
∥LI;t1∘LI;t2∘…∘LI;tnðρÞ∥1≤ln, where at most ln¼OðNnÞ.
The map LI;t is shorthand notation for the transformation of
L into the interaction frame generated by KðtÞ.
The expectation value of the observable A is obtained

from the final state ρλðTÞ as EKðλÞ ¼ tr½AρλðTÞ�. The
function EKðλÞ can be expressed as a series in λ where
the contribution with λ0 corresponds to the noise-free
evolution. This can be seen by transforming the evolution
into the interaction frame with respect to KðtÞ and
expanding the Born series; cf. the Supplemental
Material, Sec. I [16]. Starting from the noise-free expect-
ation value E� ¼ tr½Aρ0ðTÞ�, the expansion is given by

EKðλÞ ¼ E� þ
Xn
k¼1

akλk þ Rnþ1ðλ;L; TÞ: ð2Þ

The ak are model-specific constants typically growing like
ak ∼ NkTk. Here Rnþ1ðλ;L; TÞ is the remainder of the
expansion and can be bounded by jRnþ1ðλ;L; TÞj ≤
∥A∥lnþ1ðλTÞnþ1=ðnþ 1Þ! by standard arguments. Since
we assumed an extensive scaling of ln, such an expansion is
only meaningful whenever NTλ is small. We are of course
interested in limλ→0EKðλÞ ¼ E�; however, we are faced
with a small but finite parameter λ. Since we only have
access to EKðλÞ, our estimate of E� will be off by OðλÞ.
This estimate can be improved by Richardson’s deferred

approach to the limit [15,23]. To explain the idea, let us
assume we can run the quantum circuit at different noise
rates λj, with j ¼ 0;…; n and obtain experimental esti-
mates ÊKðλjÞ ¼ EKðλjÞ þ δj. Here the λj ¼ cjλ are appro-
priately rescaled values of the experimental noise rate λ.
The estimate deviates from the actual expectation value
due to experimental inaccuracies and finite sampling errors
by an error δj. The estimate of E� can be significantly
improved by considering the approximation Ên

KðλÞ, which
is written as the linear combination

Ên
KðλÞ ¼

Xn
j¼0

γjÊKðcjλÞ: ð3Þ

Here we require the coefficients γj to satisfy the linear
system of equations [23].

Xn
l¼0

γj ¼ 1 and
Xn
j¼0

γjckj ¼ 0 for k ¼ 1…n: ð4Þ

The linear combination Eq. (3) will be an approximation to
E� up to an error of order Oðλnþ1Þ.
To obtain estimates at different noise rates λj, we use a

rescaling trick. We run the same circuit nþ 1 times with
rescaled parameters in KðtÞ. We follow the protocol: 1. For
j ¼ 0;…; n (a) choose a rescaling coefficient cj > 1

(c0 ¼ 1) and evolve ρð0Þ with rescaled Hamiltonian
KjðtÞ ¼ P

αJ
j
αðtÞPα, where

JjαðtÞ ¼ c−1j Jαðc−1j tÞ; ð5Þ

for time Tj ¼ cjT. (b) Estimate observable A to obtain
ÊKðcjλÞ. 2. Solve Eq. (4) and compute Ên

KðλÞ as in Eq. (3).
A rescaling of the equations shows that the state ρjλðTjÞ,

which evolves under _ρjλ ¼ −i½KjðtÞ; ρj� þ λLðρjÞ for time
Tj, satisfies ρjλðTjÞ ¼ ρcjλðTÞ; cf. Supplemental Material,

Sec. II [16]. Hence the estimates ÊKðcjλÞ¼ tr½AρjλðTjÞ�þδj
can be obtained from the nþ 1 runs rescaled according to
the protocol.
If the protocol is performed for nþ 1 steps, the error

between the exact expectation value E� and the estimator
Ên
KðλÞ can be bounded by

jE� − Ên
KðλÞj ≤ Γn

�
δ� þ ∥A∥

lnþ1ðλTÞnþ1

ðnþ 1Þ!
�
: ð6Þ

Here Γn ¼
P

n
j¼0 jγjjcnþ1

j and δ� ¼ maxjjδjj is the largest
experimental error.
This follows from repeated application of the triangle

inequality; cf. Supplemental Material, Sec. III [16]. The
Eq. (4) can be solved, and one finds that the coefficients
γj ¼

Q
m≠jcmðcj − cmÞ−1, so that the constant Γn can be

evaluated. In the literature [23], several choices for pro-
gression of cj are common. The two most frequent series
are exponential decrease (Bulirsch-Stoer) and harmonic
decay. In our experiments we are actually increasing the
noise rate starting from the optimal value, whereas it is
common in the numerical literature to improve the small
parameter. The result is, of course, the same.
Examples.—To demonstrate this method we will con-

sider three numerical examples. In all the examples the time
evolution is given by a Hamiltonian KðtÞ that encodes a
control problem. For a single drift step we evolve with a
Hamiltonian KRðtÞ ¼ UNðθÞK0U

†
NðθÞ, where the single

qubit product unitary UNðθÞ ∈ SUð2Þ⊗N is chosen Haar-
random, and the drift Hamiltonian K0 ¼

P
i;jJi;jXiZj is
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chosen with respect to a random graph and Gaussian
distributed couplings Ji;j. The evolution is subject to three
different noise models: First, in Fig. 1(a), we evolve in the
presence of depolarizing noise described by the sum of
single qubit generators Li ¼ −λð2−1triðρÞ − ρÞ acting on
all N qubits. Second, in Fig. 1(b), we consider dephasing
and amplitude damping noise on every qubit, where
we have chosen a ratio of λ1=λ2 ¼ 1.5 with a generator
Li ¼ λ1ðσ−i ρσþi − 1

2
fσþi σ−i ; ρgÞ þ λ2ðZiρZi − ρÞ and σ�i ¼

2−1ðXi � iYiÞ. Third, in Fig. 1(c), we consider a highly
non-Markovian setting, where each of the N qubits i is
coupled to its own single-qubit bath bi via the Hamiltonian
Vi ¼ 1=2Xi ⊗ Xbi þ 1=2Zbi and the bath is prepared in the
initial state ρB ¼ ½2 coshðβ=2Þ�−N expð−βPbiσ

z
bi
Þ. Then,

after the evolution of each noisy circuit T ¼ td we measure
a randomly chosen multiqubit Pauli operator Pα.
The graphs in Fig. 1 show that with modest effort very

high precisions can be obtained. In the low noise range
ϵ ∼ 10−3 the relative error can be reduced to ΔE∼
10−6–10−11. The precision is then essentially determined
by the sampling error δ�, which we have neglected in the
plots.
Probabilistic error cancellation.—Here we discuss a

noise reduction scheme for quantum circuits subject to
Markovian noise. First let us state our assumptions on the
noise model. A noisy N-qubit device will be described by a
basis set of noisy operations Ω ¼ fO1;…;Omg that can be
implemented on this device. Each operation Oα is a trace-
preserving completely positive (TPCP) map on N qubits
that acts nontrivially only on a small subset of qubits, say at
most two. For example, Oα could be a noisy unitary gate
applied to a specified pair of qubits or a noisy qubit
initialization. We assume that noise in the system can be

fully characterized such that the map Oα is known for each
α. A circuit of length L in the basis Ω is a sequence of L
operations fromΩ. LetΩL be a set of all length-L circuits in
the basis Ω. A circuit α ¼ ðα1;…; αLÞ implements a map
Oα ¼ OαL…Oα2Oα1 . The expectation value of an observ-
able A on the final state produced by a noisy circuit α is

EðαÞ ¼ tr½AOαðj0ih0j⊗nÞ�:

For simplicity, we ignore errors in the initial state prepa-
ration and in the final measurement. Such errors can be
accounted for by adding dummy noisy operations before
each measurement and after each qubit initialization.
Furthermore, we shall assume that A is diagonal in the
Z basis and ∥A∥ ≤ 1.
Below we show that under certain conditions the task of

simulating an ideal quantum circuit can be reduced to
estimating the expectation value EðαÞ for a suitable random
ensemble of noisy quantum circuits α. Moreover, the ideal
and the noisy circuits act on the same number of qubits and
have the same depth.
Let Γ ¼ fU1;…;Ukg be a fixed basis set of ideal gates.

Each gate UβðρÞ ¼ UβρU
†
β is described by a unitary TPCP

map on N qubits that acts nontrivially on a small subset of
qubits. An ideal length-L circuit in the basis Γ is a sequence
of L gates from Γ. A circuit β ¼ ðβ1;…; βLÞ implements a
map Uβ ¼ UβL…Uβ2Uβ1 . Define an ideal expectation value

E�ðβÞ ¼ tr½AUβðj0ih0j⊗nÞ�:

We consider a simulation task where the goal is to estimate
E�ðβÞ with a specified precision δ.
The key idea of our scheme is to represent the ideal

circuit as a quasiprobabilistic mixture of noisy ones. Let us
say that a noisy basisΩ simulates an ideal circuit β with the
overhead γβ ≥ 1 if there exists a probability distribution
PβðαÞ on the set of noisy circuits α ∈ ΩL such that

Uβ ¼ γβ
X
α∈ΩL

PβðαÞσβðαÞOα ð7Þ

for some coefficients σβðαÞ ¼ �1. We also require that the
distribution PβðαÞ is sufficiently simple so that one can
efficiently sample α from PβðαÞ. The coefficients γβ, σβðαÞ
must be efficiently computable. We shall refer to Eq. (7) as
a quasiprobability representation (QPR) of the ideal circuit
β. Note that γβ ≥ 1 because Uβ andOα are trace preserving.
Quasiprobability distributions have been previously used to
construct classical algorithms for simulation of quantum
circuits [20,21]. Our work can be viewed as an application
of these methods to the problem of simulating ideal
quantum circuits by noisy ones.
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FIG. 1. The plots show a random Hamiltonian evolution for
N ¼ 4 system qubits and d ¼ 6 drift steps, each for time t ¼ 2.
For all systems plot the error ΔE ¼ jE� − Ên

KðλÞj for n ¼ 0, 1, 2,
3. Here λ1, n ¼ 0 corresponds to the uncorrected error. The noise
parameter λ ¼ −1=2 logð1 − ϵÞ is chosen so that all plots have the
same perturbation measured in the depolarizing strength
ϵ ¼ 10−3…10−2. The plot shows the mitigation of (a) depolariz-
ing noise, (b) amplitude damping/dephasing noise, and (c) non-
Markovian noise, for fcjg chosen as random partition of in the
interval [1,4].
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Substituting Eq. (7) into the definition of E�ðβÞ gives

E�ðβÞ ¼ γβ
X
α∈ΩL

PβðαÞσβðαÞEðαÞ: ð8Þ

Let α ∈ ΩL be a random variable drawn from PβðαÞ and
x ∈ f0; 1gn be the final readout of the noisy circuit α
obtained by measuring each qubit of the final state
Oαðj0ih0j⊗nÞ in the Z basis. Note that hxjAjxi is an
unbiased estimator of EðαÞ with the variance Oð1Þ. Thus
from Eq. (8) one infers that γβσβðαÞhxjAjxi is an unbiased
estimator of the ideal expectation value E�ðβÞ with the
variance Oðγ2βÞ. We can now estimate E�ðβÞ with any
desired precision δ by the Monte Carlo method. Define

M ¼ ðδ−1γβÞ2 ð9Þ

and generate M samples α1;…;αM ∈ ΩL drawn from
PβðαÞ. By Hoeffding’s inequality, E�ðβÞ is approximated
within error OðδÞ w.h.p. by a random variable

ÊðβÞ ¼ γβ
M

XM
a¼1

σβðαaÞhxajAjxai; ð10Þ

where xa ∈ f0; 1gn is the final string of the noisy circuit αa.
Computing the estimator ÊðβÞ requiresM runs of the noisy
circuits, with each run producing a single readout string xa.
Estimating E�ðβÞ with a precision δ in the absence of noise
by the Monte Carlo method would require approximately
δ−2 runs. Thus the quantity γ2β determines the simulation
overhead [see Eq. (9)].
A systematic method of constructing QPRs with a small

overhead is given in the Supplemental Material, Sec. IV
[16]. Here we illustrate the method using toy noise models
usually studied in the quantum fault-tolerance theory: the
depolarizing noise and the amplitude damping noise. For
concreteness, we choose the ideal gate set Γ as the standard
Clifford+T basis.
Let Dk be the depolarizing noise on k ¼ 1, 2 qubits that

returns the maximally mixed state with probability ϵ and
does nothing with probability 1 − ϵ. Define a noisy version
of a k-qubit unitary gate U as DkU. The noisy basis Ω is
obtained by multiplying ideal gates on the left by arbitrary
Pauli operators and adding the depolarizing noise. Thus Ω
is a set of operations Oα ¼ DkPU, where U ∈ Γ is a k-
qubit ideal gate and P ∈ fI ;X ;Y;Zg⊗k is a Pauli TPCP
map. The random ensemble of noisy circuits Oα that
simulates an ideal circuit Uβ is constructed in three steps:
(1) Start from the ideal circuit,Oα ¼ Uβ. (2) ModifyOα by
adding a Pauli X, Y, Z after each single-qubit gate with
probability p1 ¼ ϵ=ð4þ 2ϵÞ. The gate is unchanged with
probability 1 − 3p1. (3) Modify Oα by adding a Pauli
IX; IY;…; ZZ after each CNOT with probability p2 ¼
ϵ=ð16þ 14ϵÞ. The CNOT is unchanged with probability

1 − 15p2. The resulting circuit is then implemented on a
noisy device (which adds the depolarizing noise after each
gate) and the final readout string x is recorded. By
generating M samples of x one can estimate E�ðβÞ from
Eq. (10). The sign function σβðαÞ is equal to ð−1Þr, where r
is the number of Pauli operators added to the ideal circuit
Uβ. As shown in in the Supplemental Material, Sec. IV
[16], the above defines a QPR of the ideal circuit Uβ with
the overhead γβ ≈ 1þ ϵð3L1=2þ 15L2=8Þ, where L1 is the
number of single-qubit gates and L2 is the number of
CNOTS in the ideal circuit. The method has been tested
numerically for random noisy Cliffordþ T circuits;
see Fig. 2.
A more interesting example is the noise described by the

amplitude-damping channel A that resets every qubit to its
ground state with probability ϵ. A noisy version of a k-qubit
unitary gate U is defined as A⊗kU. In contrast to the
previous example, noisy unitary gates A⊗kU alone cannot
simulate any ideal unitary gate since A is not a unital map.
To overcome this, we extend the noisy basis Ω by adding
noisy versions of single-qubit state preparations APjψi,
where Pjψi maps any input state to jψihψ j. Our scheme
requires state preparations for single qubit states jψi ¼
jþi; j−i; j0i; j1i that can be performed at any time step (not
only at the beginning). In the Supplemental Material
Sec. V [16] we show how to construct a QPR of the
ideal Cliffordþ T circuit Uβ with the overhead γβ ≈
1þ ϵð2L1 þ 4L2Þ. The examples considered above suggest
that well-characterized noisy circuits can simulate ideal
ones with overhead γ ≈ ð1þ cϵÞL, where ϵ is the typical
error rate and c is a small constant. The value of c can be
determined by performing quantum process tomography
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FIG. 2. Simulation precision δðβÞ ¼ jÊðβÞ − E�ðβÞj for 500
randomly generated ideal Clifford+T circuits on N ¼ 6 qubits
with depth d ¼ 20. The gates are subject to single- and two-qubit
depolarizing noise ϵ ¼ 10−2. The figure shows results for
simulations without (a) and with (b) error cancellation. In both
cases each ideal circuit was simulated by M ¼ 4000 runs of the
noisy circuit. For each circuit Uβ we defined the observable A as a
projector Πout onto the subset of 2N−1 basis vectors with the
largest weight in the final state. The results are consistent with
γβ ≈ 4.3 so that γβM−1=2 ≈ 0.07.
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[22] and finding the QPR for each ideal gate. Using Eq. (9),
one can estimate the number of noisy circuit runs of length
L as M ∼ exp ð2cϵLÞ. Assuming error rates in the range
ϵ ∼ 10−3, it may be possible to simulate ideal circuits with
Oð103Þ gates.
Conclusions.—Both error mitigation schemes require no

additional quantum hardware such as ancilla or code qubits
and work directly with the physical qubits. The zero-noise
extrapolation requires sufficient control of the time evolu-
tion to implement the rescaled dynamics and hinges on the
assumption of a large time-scale separation between
the dominant noise and the controlled dynamics. For the
probabilistic error cancellation a full characterization of the
noisy computational operations is necessary. To obtain this
to a precision of ∼10−3 is challenging in practice. However,
if one is willing to sacrifice optimality, a Pauli- or Clifford-
twirling [24,25] can be applied that converts any noise
channel into a simple mixture of Pauli errors or depolarizing
noise, making the characterization task muchmore manage-
able. A very recent independent paper by Li and Benjamin
[26] discusses similar issues to those addressed here.
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