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We discuss information-theoretic properties of low-energy photons and gravitons in the S matrix. Given
an incoming n-particle momentum eigenstate, we demonstrate that unobserved soft photons decohere
nearly all outgoing momentum superpositions of charged particles, while the universality of gravity implies
that soft gravitons decohere nearly all outgoing momentum superpositions of all the hard particles. Using
this decoherence, we compute the entanglement entropy of the soft bosons and show that it is infrared-finite
when the leading divergences are resummed in the manner of Bloch and Nordsieck.
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Introduction.—The massless nature of photons and grav-
itons leads to an infrared catastrophe, in which the S matrix
becomes ill defined due to divergences coming from low-
energy virtual bosons. The usual solution to this problem,
originally given by Bloch and Nordsieck in electrodynamics
[1] and extended to gravity by Weinberg [2], is to argue that
an infinite number of low-energy bosons are radiated away
during a scattering event; this leads to divergences which
cancel the divergences from the virtual states, and physical
predictions in terms of infrared-finite inclusive transition
probabilities.
In this Letter, we study quantum information-theoretic

aspects of this proposal. Since each photon and graviton has
two polarization states and three momentum degrees of
freedom, one might suspect that the low-energy radiation
produced during scattering could carry a huge amount of
information. Here we demonstrate that, according to the
methodology of [1–3], if the initial state is an incoming n-
particle momentum eigenstate, the “soft” bosonic divergen-
ces can lead to complete decoherence of the momentum state
of the outgoing “hard” particles. This decoherence is avoided
only for superpositions of pairs of outgoing states for which
an infinite set of angle-dependent currents match; see
Eq. (11). In simple examples like QED, this will be enough
to get complete decoherence of all momentum superposi-
tions. In less simple cases, one is still left with an extremely
sparse density matrix dominated by its diagonal elements.
Having traced the radiation in this fashion, we obtain an

infrared-finite, mixed reduced density matrix for the hard
particles. In the simple cases when we get a completely
diagonal matrix, we compute the entanglement entropy
carried by the soft gauge bosons. The answer is finite and
scales like the logarithm of the energy resolution E of a
hypothetical soft boson detector.
While the tracing out of the soft radiation can be viewed

as a physical statement about the energy resolution of a
real detector, in this formalism, the trace is also forced
on us by mathematical consistency: it is the only way to get

well-defined transition probabilities from the infrared-
divergent S matrix. There is an alternative approach to
the infrared catastrophe, in which one constructs an IR-
finite S matrix of transition amplitudes between “dressed”
matter states [4–7]. In such an approach, there are no
divergences and so one is not forced to trace over any soft
radiation. Whether the two formalisms lead to the same
physical picture is an interesting question, and we leave a
detailed comparison to future work.
Recently, the infrared structure of gauge theories has

become a topic of much interest due to the proposal that
soft radiation may encode information about the history of
formation of a black hole [8–10]. We hope that our work
can make this discussion more quantitatively grounded; we
comment on black holes at the end of this Letter. More
generally, it is of interest to understand the information-
theoretic nature of the infrared sector of quantum field
theories, and our paper is intended to make some first steps
in this direction.
Decoherence of the hard particles.—Fix a single-particle

energy resolution E. We define soft bosons as those with
energy less than E, and hard particles as anything else.
Consider an incoming state jαiin consisting of hard par-
ticles, charged or otherwise, of definite momenta [11]. The
S matrix evolves this into a coherent superposition of states
with hard particles β and soft bosons b ¼ γ, h (photons γ
and gravitons h),

jαiin ¼
X
βb

Sβb;αjβbiout: ð1Þ

Hereafter we drop the subscript on kets, which will always
be out-states. Tracing out the bosons jbi, the reduced
density matrix for the outgoing hard particles is

ρ ¼
X
ββ0b

Sβb;αS�β0b;αjβihβ0j: ð2Þ
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Using the usual soft factorization theorems [2,3,12], we can
write the amplitudes in terms of the amplitudes for α → β
multiplied by soft factors, one for each boson:

Sβb;α ¼ Sβ;αFβ;αðγÞGβ;αðhÞ; ð3Þ
where the soft factors F, G are

Fβ;αðγÞ ¼
X
n∈α;β

X
�

Y
i∈γ

enηn
ð2πÞ3=2j kij1=2

pμ
nϵ�μ;�ð kiÞ

pn · ki − iηnϵ
;

Gβ;αðhÞ ¼
X
n∈α;β

X
�

Y
i∈h

M−1
p ηn

ð2πÞ3=2j kij1=2
pμ
npν

nϵ
�
μν;�ð kiÞ

pn · ki − iηnϵ
:

ð4Þ
Here the index n runs over all the incoming and outgoing
hard particles, i runs over the outgoing soft bosons;
ηn ¼ −1 for an incoming and þ1 for an outgoing hard
particle. The en are electric charges and Mp ¼ ð8πGNÞ−1=2
is the Planck mass, and the ϵ’s are polarization vectors or
tensors for outgoing soft photons and gravitons, respec-
tively. By an argument identical to the one employed by
Weinberg [2], and assuming we can neglect the total lost
energy ET compared to the energy of the hard particles, we
can use this factorization to perform the sum over soft
bosons in (2), and we find that

X
b

Sβb;αS�β0b;α ¼ Sβ;αS�β0;α

�
E
λ

� ~Aββ0 ;α
�
E
λ

� ~Bββ0 ;α

× f

�
E
ET

; ~Aββ0;α

�
f

�
E
ET

; ~Bββ0;α

�
: ð5Þ

Here λ ≪ E is an infrared regulator used to cut off
momentum integrals which we will send to zero later;
one can think of λ as a mass for the photon and graviton.
The exponents are

~Aββ0;α¼−
X
n∈α;β
n0∈α;β0

enen0ηnηn0

8π2
β−1nn0 ln

�
1þβnn0

1−βnn0

�
;

~Bββ0;α¼
X
n∈α;β
n0∈α;β0

mnmn0ηnηn0

16π2M2
p

1þβ2nn0

βnn0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β2nn0

q ln

�
1þβnn0

1−βnn0

�
; ð6Þ

and f is a complicated function which can be found in [13];
for E=ET ¼ Oð1Þ and for small A, f may be approximated
as fð1; AÞ ≈ 1 − π2A2=12þOðA4Þ. In these formulas, βnn0
is the relative velocity between particles n and n0,

βnn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
nm2

n0

ðpn · pn0 Þ2

s
:

For future use, we note that 0 ≤ β ≤ 1, and both of the
dimensionless functions of β appearing in (6) run over

½2;∞Þ as β runs from 0 to 1. We have βnm ¼ 0 if and only
if pn ¼ pm.
The divergences as λ → 0 in (5) come from summing

over an infinite number of radiated, on-shell bosons. There
are also infrared divergences inherent to the transition
amplitude Sβ;α itself coming from virtual bosons. Again
following Weinberg, we can add these divergences up, and
we have that

Sβ;α ¼ SΛβ;α

�
λ

Λ

�
Aβ;α=2

�
λ

Λ

�
Bβ;α=2

; ð7Þ

where now SΛβ;α means the amplitude computed using only
virtual bosons of energy above Λ, and

Aβ;α ¼−
X

n;m∈α;β

enemηnηm
8π2

β−1nm ln

�
1þβnm
1−βnm

�
;

Bβ;α ¼
X

n;m∈α;β

mnmmηnηm
16π2M2

p

1þβ2nm

βnm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β2nm

p ln

�
1þβnm
1−βnm

�
: ð8Þ

An infrared-divergent “Coulomb” phase is suppressed
in (7). We will see shortly that this phase cancels out of
all the relevant density matrix elements.
Putting the above results together, we find that the

reduced density matrix coefficient for jβihβ0j is given by

ρββ0 ¼ SΛβ;αS
Λ�
β0;α

�
E
λ

� ~Aββ0 ;α
�
λ

Λ

�
Aβ;α=2þAβ0 ;α=2

×

�
E
λ

� ~Bββ0 ;α
�
λ

Λ

�
Bβ;α=2þBβ0 ;α=2

× f

�
E
ET

; ~Aββ0;α

�
f

�
E
ET

; ~Bββ0;α

�
: ð9Þ

The question is how this behaves in the limit that the
infrared regulator λ → 0. The coefficient scales as λΔAþΔB,
where

ΔAββ0;α ¼
Aβ;α

2
þ Aβ0;α

2
− ~Aββ0;α;

ΔBββ0;α ¼
Bβ;α

2
þ Bβ0;α

2
− ~Bββ0;α: ð10Þ

In the SupplementalMaterial [14], we prove that both of these
exponents are positive-definite,ΔAββ0;α ≥ 0 andΔBββ0;α ≥ 0.
The density matrix components (9) which survive as the
regulator λ → 0 are those for whichΔA ¼ ΔB ¼ 0; all other
density matrix elements will vanish.
To give necessary and sufficient conditions for ΔA ¼

ΔB ¼ 0, we define two currents for each spatial velocity
vector v. We assume for simplicity that only massive
particles carry electric charge. For massive particles, there
are electromagnetic and gravitational currents defined as
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jEMv ¼
X
i

eiai†pið vÞa
i
pið vÞ;

jGRv ¼
X
i

Eið vÞai†pið vÞa
i
pið vÞ: ð11Þ

Here i labels particle species, ei their charges, and mi their
masses; the kinematic quantities pið vÞ ¼ mi v=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

and Eið vÞ ¼ mi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
are the momentum and energy

of species i when it has velocity v. For lightlike particles
we have to separately define the gravitational current, since
a velocity and species does not uniquely determine a
momentum:

jGR;m¼0
v ¼

X
i

Z
∞

0

dωωai†ω va
i
ω v: ð12Þ

Momentum eigenstates of any number of particles are
obviously eigenstates of these currents and we denote their
eigenvalues j vjαi ¼ j vðαÞjαi. These currents are presum-
ably related to the family of charges defined in [15], but the
detailed relation is left to future work.
The photonic exponent ΔAββ0;α is zero if and only if

the charged currents in β are the same as those in β0; the
gravitational exponent ΔBββ0;α is zero if and only if all the
hard gravitational currents in β are the same as those in β0.
This is demonstrated in detail in the Supplemental Material
[14]. For any such pair of outgoing states jβi, jβ0i, (9)
becomes independent of the IR regulator λ and is thus finite
as λ → 0,

ρββ0 ¼ SΛ�β0αS
Λ
βαF ββ0;αðE; ET;ΛÞ; ð13Þ

where

F ββ0;α ¼ f

�
E
ET

; ~Aββ0;α

�
f

�
E
ET

; ~Bββ0;α

��
E
Λ

� ~Aββ0 ;αþ ~Bββ0 ;α
:

ð14Þ
As explained by Weinberg, rescaling Λ simply renorm-
alizes ρββ0 [2]. For diagonal density matrix elements β ¼ β0,
we obtain the standard transition probabilities

ρββ ¼ jSΛβαj2F βαðE;ET;ΛÞ ð15Þ

with F βα ¼ fðAβ;αÞfðBβ;αÞðE=ΛÞAβ;αþBβ;α [2]. On the other
hand, if there is even a single v for which one of the
currents (11) or (12) does not have the same eigenvalue
in jβi and jβ0i, then the density matrix coefficient decays
as λΔAþΔB → 0 as the regulator λ → 0. We see that the
unobserved soft bosons have almost completely decohered
the momentum state of the hard particles. Only a very
sparse subset of superpositions in which all the j vðβÞ ¼
j vðβ0Þ survive.
Examples.—To get a feel for the results presented in

the previous section, we consider a few examples. First,

consider any scattering with a single incoming and out-
going charged particle, like potential or single Compton
scattering. Let the incoming momentum be α ¼ p and the
outgoing momenta of the two branches β ¼ q, β0 ¼ q0.
We have either directly from the definition (10) or the
theorem (1) in the supplement that

ΔAqq0;p ¼ −
e2

8π2
½2 − γqq0 �; ð16Þ

where γqq0 ¼ β−1qq0 lnð1þ βqq0 Þ=ð1 − βqq0 Þ. ThisΔA is easily
seen to equal zero if and only if q ¼ q0. Thus other than the
spin degree of freedom, the resulting density matrix for the
charge is exactly diagonal in momentum space.
To see an example where the current-matching condition

is nontrivially fulfilled, consider a theory with two
charged particle species of charge e and e=2 and the
same mass. Then we can get an outgoing superposition
of a state β ¼ ðe; qÞ and one with two half-charges
β0 ¼ ðe=2; q01Þ þ ðe=2; q02Þ. The differential exponent for
such a superposition is

ΔAββ0;p ¼ −
e2

8π2

�
3þ 1

2
γq1q2 − γqq1 − γqq2

�
; ð17Þ

which is zero if q ¼ q1 ¼ q2. In other words, the currents
(11) cannot distinguish between a full charge of momentum
q and two half-charges of the same momentum.
Entropy of the soft bosons.—We have seen that the

reduced density matrix for the outgoing hard particles is
very nearly diagonal in the momentum basis. In a simple
example like a theory with various scalar fields ϕi of
different, nonzero masses mi, the soft graviton emission
causes complete decoherence into a diagonal momentum-
space reduced density matrix for the hard particles. More
generally, we may have a sparse set of superpositions, and
in any case spin and other internal degrees of freedom are
unaffected by the soft emission.
In a simple example with a purely diagonal reduced

density matrix, it is straightforward to compute the entan-
glement entropy of the soft emitted bosons. The total hard
þ soft system is in a bipartite pure state, with the partition
being between the hard particles and soft bosons, so the
entanglement entropy of the bosons is the same as that of
the hard particles. Following the calculation in [16–18], we
can simply write down the entropy:

S ¼ −
X
β

jSΛβαj2F βα ln ½jSΛβαj2F βα�: ð18Þ

This sum is infrared-finite; again, F is given in (14), and
the superscript Λ means the naive S matrix computed with
virtual bosons only of energies greater than Λ. Given the
explicit form of F , we see that the entropy scales like the
log of the infrared detector resolution E.
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Discussion.—According to the solution of the infrared
catastrophe advocated in [1–3], an infinite number of very
low-energy photons and gravitons are produced during
scattering events. We have shown that if taken seriously,
considering this radiation as lost to the environment
completely decoheres almost any momentum state of the
outgoing hard particles. The basic idea is simple: the
radiation is essentially classical, so any two scattering
events are easy to distinguish by their radiation.
The physical content of this result is somewhat unclear.

A conservative view is that the methodology of [1–3] is ill
suited to finding outgoing density matrices. As remarked
earlier, in this formalism, one must trace the radiation to get
well-defined transition probabilities. An alternative would
be to use the infrared-finite S-matrix program [4–7], in
which no trace over radiation is needed at all. But then we
need to understand where the physical low-energy radiation
is within that formalism—since after all, a photon that is
lost to the environment certainly does decohere the system.
The decoherence found here is for the momentum states

of the particles: at lowest order in their momenta, soft bosons
do not lead to decoherence of spin degrees of freedom.
However, the subleading soft theorems [19–21] do involve
the spin of the hard particles, so going to the next order in the
soft particles would be interesting [22]. We would also like
to understand to what extent our answers depend on the
infinite-time approximation used in the S-matrix approach.
Our calculation shows that the pointer basis for a scattering
experiment in QED or gravity is the eigenbasis of the current
operators (11). This is consistent with the fact that in theories
with long-range forces, the asymptotic dynamics is not free,
but rather controlled by classical currents [6]. We leave a
detailed study of this issue to future work.
To end, we comment on potential applications to the

black hole information paradox. The idea advocated in
[8,9] is that correlations between the hard and soft particles
mean that information about the black hole state can be
encoded into soft radiation. In [10,23,24], the dressed-state
formalism and soft factorization has been used to argue that
the soft particles simply factor out of the S matrix and thus
contain no such information. In the approach used here, it is
manifest that the outgoing hard state and outgoing soft state
are highly correlated, leading to the decoherence of the hard
state. The outgoing density matrix for the hard particles,
while not completely thermal, has been mixed in momen-
tum as much as possible while retaining consistency with
standard QED and perturbative gravity predictions.
We can make a crude order-of-magnitude estimate of

the entropy carried by soft photons during the black hole
formation and evaporation process. Consider an incoming
pure state which has high enough center-of-mass energyffiffiffi
s

p
and small enough impact parameter that black hole

formation is very likely. The black holes are only inter-
mediate states; if we wait long enough, they will have
evaporated into (hard) Hawking radiation. According to our

results, then, tracing the final soft radiation will leave a final
state ρhard ¼

P
BPBFBjBihBj þ

P
RPRFRjRihRj. Here

B means a state of Hawking radiation coming from a
particular intermediate black hole state, R represents a
branch where no black hole was ever formed, and the F are
the soft factors (14). There is evidence that at high center-
of-mass energies, black holes should have production cross
sections given by their geometric areas PB ∼ πr2hð

ffiffiffi
s

p Þ and
dominate the outoging states [25]. Using this in (18) and
neglecting branches R without black holes, one obtains a
hard-soft entanglement entropy scaling like the black hole
area times logarithmic soft factors. In this sense one might
view the soft radiation as containing a significant fraction
of the black hole entropy [26].
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