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Robust quantum computation requires encoding delicate quantum information into degrees of freedom
that are hard for the environment to change. Quantum encodings have been demonstrated in many physical
systems by observing and correcting storage errors, but applications require not just storing information;
we must accurately compute even with faulty operations. The theory of fault-tolerant quantum computing
illuminates a way forward by providing a foundation and collection of techniques for limiting the spread of
errors. Here we implement one of the smallest quantum codes in a five-qubit superconducting transmon
device and demonstrate fault-tolerant state preparation. We characterize the resulting code words through
quantum process tomography and study the free evolution of the logical observables. Our results are
consistent with fault-tolerant state preparation in a protected qubit subspace.
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The possibility of robust quantumcomputation rests on the
fact that quantum information can be encoded in degrees of
freedom that are difficult for local noise processes to change.
Quantum codes with this potential have been demonstrated
in many physical systems [1–11]. To make practical use of
these codes, however, it is necessary not only to encode,
decode, and observe errors, but to compute with faulty and
inaccurate operations in a way that does not spread errors.
The well-developed theory of fault-tolerant quantum com-
puting reveals a steep experimental path toward this goal
[12,13]. Recently, the question of what constitutes aminimal
experimental demonstration of fault tolerance was consid-
ered [14]. Fault-tolerant state preparation was demonstrated
soon thereafter using a quantum error detecting code with
trapped atomic ions [15]. Here we go beyond that result,
implementing fault-tolerant state preparation on a super-
conducting qubit systemwith supporting evidence including
quantum state tomography of prepared code words, accep-
tance, and logical error probabilities with and without error
insertion, and analysis of the measured logical observables
under free evolution.
We implement one of the smallest quantum codes, a four

qubit code encoding two qubits [16], and characterize
output states produced by fault-tolerant state preparation
circuits. The circuits are fault-tolerant for only one of the
two encoded qubits, which allows direct comparison of
their error rates. The circuits are applied in a five-qubit
transmon device with nearest-neighbor connectivity. This
device is a nontrivial subset of a surface code lattice in the
sense that it provides resources for detection of any single-
qubit error. Although the connectivity and size places limits
on the set of fault-tolerant circuits we can implement on the
four-qubit code, we can use stabilizer measurements to
prepare codewords in a way that is analogous to surface
code state preparation.

Four qubit code.—The four-qubit code [16] encodes two
logical qubits into four physical qubits and can detect
any error that acts on one of those physical qubits. It is
the smallest code that can detect a general error and is
unique [17]. The four-qubit code is defined by the stabilizer
group S ¼ hSx; Szi with stabilizers [18] Sx ¼ X1X2X3X4

and Sz ¼ Z1Z2Z3Z4. Here X ¼ j0ih1j þ j1ih0j and Z ¼
j0ih0j − j1ih1j are Pauli operators. The pair of encoded
qubits are defined by logical operators

X̄L1 ¼ X1X3; Z̄L1 ¼ Z1Z2;

X̄L2 ¼ X1X2; Z̄L2 ¼ Z1Z3: ð1Þ

The minimum distance of a stabilizer code is the minimum
number of qubits acted on by any Pauli operator that
commutes with S but lies outside of it [18,19]; in this case,
that distance is two. Stabilizer codes are described by
parameters ½½n; k; d��, where n is the number of physical
qubits, k is the number of logical qubits, and d is the
minimum distance. Our code, thus, is a ½½4; 2; 2�� code.
The code space is spanned by four states j0̄ 0̄; ~0 ~0i ∝

j0000i þ j1111i, j0̄ 1̄; ~0 ~0i ∝ j1100i þ j0011i, j1̄ 0̄; ~0 ~0i ∝
j1010i þ j0101i, and j1̄ 1̄; ~0 ~0i ∝ j0110i þ j1001i. On the
left-hand side, we order the labels jL1L2; szsxi, where sz
and sx are syndrome bits that record phase and bit-flip
errors, respectively. The syndromes correspond to single-
shot measurements of the observables Sx and Sz, which
have eigenvalues ð−1Þsz and ð−1Þsx , respectively.
We define destabilizers ~ZD ¼ Z4 and ~XD ¼ X4 that

commute with the logical operators and anticommute with
corresponding stabilizers Sx and Sz. The destabilizers
change the values of the syndrome bits without affecting
the logical qubits. The whole four-qubit Hilbert space is
spanned by 16 states fjL1L2; szsxig, where L1 and L2 take

PRL 119, 180501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 NOVEMBER 2017

0031-9007=17=119(18)=180501(5) 180501-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.180501
https://doi.org/10.1103/PhysRevLett.119.180501
https://doi.org/10.1103/PhysRevLett.119.180501
https://doi.org/10.1103/PhysRevLett.119.180501


values over the four states of the logical qubits and sz and sx
run over the four possible syndromes.
Implementation.—The device consists of five fixed-

frequency superconducting transmon qubits, four of which,
Di with i ∈ 1; 2; 3; 4, are used as data qubits of the code (see
Fig. 1). The central qubit, S1, acts as a syndrome qubit, and it
is coupled to the four data qubits via two coplanar waveguide
(CPW) resonators acting as quantum buses, with two data
qubits on each bus. Each qubit is coupled to its own CPW
resonator for control and readout. Readout signals are
amplified via Josephson parametric converters (JPCs)
[20,21]. Device fabrication methods are described in pre-
vious work [1,3]. This is the same device that was available
on the IBM Quantum Experience in 2016 [22]. Additional
details can be found in the Supplemental Material [23].
Single-qubit gates are characterized using Clifford ran-

domized benchmarking (RB) [25] and simultaneous RB
[26]. We find single qubit error per gate (EPG) of all five
qubits to be lower than ∼9 × 10−4 and obtain crosstalk error
of less than ∼6 × 10−4 from simultaneous RB results (see
Ref. [23] for all measured EPGs and detail of cross talk).
Two-qubit controlled-NOT (CNOT) [27–29] gates are

constructed using the microwave-based cross resonance
(CR) interaction. Using a four-pulse echoed cross reso-
nance gate [4,30] as a two-qubit Clifford gate generator, we
characterize four pairs of two-qubit gates through Clifford
RB. We find two-qubit EPG of less than ∼4.6 × 10−2 [23].
The decomposition of a four-pulse echoed cross resonance
CNOT gate (FPCX) into single-qubit gates and CR inter-
actions is drawn in Fig. 2(a). The FPCX echoes all of the
first and second order Z terms from the cross resonance
Hamiltonian on the control, target, and the spectator qubits
(SQ); the terms are ZII, IZI, IIZ, ZZI, ZIZ, and IZZ.
Here, the spectator qubits are the three other qubits in the
five-qubit lattice that are neither the control nor the target
qubit for each particular CNOT. The FPCX sequence here is
similar to the four pulse sequence used in previous work [4]
but has extra pulses to echo the IZI term, which is typically
smaller than the other terms. FPCX was necessary in order

to correct for errors seen when using a two-pulse echoed
cross resonance CNOT gate (TPCX) [23].
Fault-tolerant state preparation.—The logical state

j0̄p0̄gi is prepared by running the X-stabilizer (Sx) circuit
and measuring the syndrome qubit (shown in Fig. 2). The
logical qubit L1, denoted here by p, is a fault-tolerantly
prepared protected qubit, and L2, denoted by g, is a gauge
qubit that is not prepared fault tolerantly. The other logical
states in the j0̄i and j1̄i basis are prepared by applying
logical bit flips, Eq. (1), during the j0̄p0̄gi state preparation.
From the j0̄p0̄gi state, we can prepare jþ̄gþ̄pi by applying
Hadamard gates on the four data qubits. Note that this
swaps the indices of the logical states, exchanging X̄L1 with
Z̄L2 and X̄L2 with Z̄L1. The other logical states in the jþ̄i
and j−̄i basis are prepared by applying logical phase flips,
Eq. (1), after the Hadamard gates.
To characterize the state preparation circuit, we per-

formed quantum state tomography on the four data qubits,
and reconstructed states via maximum likelihood estima-
tion with POVMs obtained from the calibrations [31]. The
difference between the ideal and reconstructed state of
j1̄p1̄gi is shown in Fig. 3. The boxed top left corner of the
reconstructed state represents the projection onto the code
space ð~0 ~0Þ. Considering the corresponding state ρð~0 ~0Þ, the

FIG. 1. (a) False-colored micrograph of a five-qubit lattice.
(b) Cartoon representation of a five-qubit lattice and the logical
operators on the data qubits as given in Eq. (1). Arrows represent
the directions of the two-qubit cross resonance gate and point
from the control to the target qubit.

FIG. 2. CNOT pulse sequences and state preparation circuit.
(a) Decomposition of the four-pulse echoed CNOT gate (FPCX).
Pulses are applied to the physical channels representing control,
cross resonance (CR), target, and spectator qubits (SQ). The pulses
comprise a frame change (FC) with an angle parameter, Gaussian
derivative (GD) with an amplitude and angle, and a Gaussian
flattop (GF) with an amplitude and angle. FC is a virtual Z gate
applied in software, where ZðθÞ ¼ FCð−θÞ [32]. (b) Logical state
preparation circuit. j0̄p0̄gi is prepared without any postrotations
(PR). Other states in the logical Z basis are prepared by applying
X̄L1 and/or X̄L2. jþ̄gþ̄pi is prepared by applying the Hadamard
gates on all four data qubits at PR.Other states in logicalX basis are
prepared by applying Z̄L1 and/or Z̄L2 following the Hadamard
gates at PR. Note that the first (left) logical qubit is the protected
qubit in the Z basis but becomes the gauge qubit in the X basis due
to the application of Hadamard gates at PR.
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largest errors are coherent errors on the gauge qubit. The
acceptance probability trðρ~0 ~0Þ and fidelity of the prepared
state ρ are obtained from ρ~0 ~0. Results computed from state
tomography data of additional prepared logical states are
given in Table I.
Error insertion.—To study how error propagates through

the j1̄p1̄gi state preparation circuit, we introduce a phase
error ZðθÞ on S1 after the 1st (A), 2nd (B), or 3rd (C) CNOT
gate [see Fig. 2(b)]. Since the state preparation is done by
syndrome measurement, we first postselect on the syndrome
measurement reading cs ¼ 1, noting that the syndrome qubit
starts from the excited state at the beginning of the circuit.
Ideally, Pðcs ¼ 1Þ ¼ 1

2
, but we observe Pðcs ¼ 1Þ ≈ 0.45

due to dissipation. Next, we compute Sz in software and

postselect on c1 ⊕ c2 ⊕ c3 ⊕ c4 ¼ 0. The acceptance prob-
ability is given by Pðc1 ⊕ c2 ⊕ c3 ⊕ c4 ¼ 0jcs ¼ 1), and
the state of the protected (gauge) qubit is determined from the
parity of c1 and c2 (c1 and c3).
Phase errors propagate from target to control through a

CNOT gate; hence, a Z error at locationsA,B, orC appears as
an X error on fD2; D3; D4g, fD3; D4g, or fD4g, respec-
tively. As we increase the error parameter θ, the acceptance
probability decreases for locations A and C but remains
constant for location B [see Fig. 4(a)]. Figure 4(b) plots the
state preparation errors as a function of θ. Aswe increase θ at
location B, error on the protected qubit remains constant,
while the error on the gauge qubit increases. For errors
inserted at locations A andC, the gauge qubit error is always
larger than protected qubit error.
Although a distance two code can only detect one error

on the data qubits, correlated two-qubit gate errors are also
detectable because the circuit is fault tolerant by construc-
tion. In particular, ideal two-qubit gates never act directly
on pairs of data qubits, so two-qubit gate errors can only
affect one data qubit at a time. To mimic this correlated
error, we simultaneously introduce YðθÞ errors on the
control and target qubits after each CNOT gate. Similar to
single-qubit error insertion, the acceptance probability
decreases as a function of θ [see Fig. 4(c)] and lower
errors are observed on the protected qubit versus the gauge
qubit [see Fig. 4(d)].

FIG. 3. Magnitude of the reconstructed j1̄p1̄gi state. We show
the absolute differences between the actual and ideal matrix
elements in the basis consisting of 16 states fjL1L2; szsxig.
Labels L1 and L2 run over the four states of the logical qubits in
the Z basis. Syndrome bits sz and sx run over the four possible
syndromes and represent the presence of phase-flip and bit-flip
errors, respectively. The Supplemental Material [23] describes the
physical to logical change of basis.

TABLE I. Acceptance probability and prepared state fidelity
given that it is in the code space, szsx ¼ 00. These states were
prepared with faulty gates whose infidelities significantly exceed
the infidelity of the protected logical qubit.

Prepare Accept j0̄p0̄gi j0̄p1̄gi j1̄p0̄gi j1̄p1̄gi
j0̄p0̄gi 0.7566 0.9726 0.0216 0.0040 0.0019
j0̄p1̄gi 0.7773 0.0245 0.9678 0.0037 0.0041
j1̄p0̄gi 0.7702 0.0028 0.0042 0.9673 0.0258
j1̄p1̄gi 0.7853 0.0033 0.0034 0.0224 0.9709

Prepare Accept jþ̄gþ̄pi jþ̄g−̄pi j−̄gþ̄pi j−̄g−̄pi
jþ̄gþ̄pi 0.7897 0.9667 0.0065 0.0199 0.0069
jþ̄g−̄pi 0.7707 0.0057 0.9632 0.0064 0.0247
j−̄gþ̄pi 0.7799 0.0247 0.0069 0.9626 0.0058
j−̄g−̄pi 0.7731 0.0065 0.0253 0.0063 0.9619

FIG. 4. (a) Acceptance and (b) error probability of logical states
with phase error ZðθÞ inserted on the syndrome qubit at various
sites. We fit the data to Eqs. (2) and (3) with an additional
systematic offset parameter δ that is added to θ [23]. (c) Accep-
tance and (d) error probability of logical states with error YðθÞ
inserted on the control and syndrome qubit after each CNOT gate.
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To understand the functional form of the error insertion
data, we modeled error insertion in the ideal state prepa-
ration circuit followed by asymmetric readout errors with
the same readout parameters for each qubit. For each error
location, we find the acceptance probability and conditional
logical error probabilities as a function of the error’s angle θ
and the readout parameters p0 ¼ Pð0j1Þ and p1 ¼ Pð1j0Þ.
For single ZðθÞ error insertion at location j, the acceptance
probability has the form

PjðacceptÞ ¼ aj þ bj cosðθÞ; ð2Þ
and the conditional logical error probabilities on logical
qubit r have the form

PjðX̄LrjacceptÞ ¼
cðrÞj þ dðrÞj cosðθÞ

PjðacceptÞ
: ð3Þ

Each coefficient is a function of p0 and p1 [23]. The
expressions for locations A and C are identical. Likewise,
for each location, the expression for combined logical error
X̄L1X̄L2 on the gauge and protected qubit is the same as the
corresponding expression for X̄L1 alone.
The dashed curves in Figs. 4(a) and (4b) are fits to the

functions given in Eqs. (2) and (3), but we include a
systematic offset parameter δ that is added to θ; i.e., we
replace cosðθÞ by cosðθ þ δÞ. The offset δj for each
location j is determined from either the acceptance or
error data based on which has the greatest curvature. The
acceptance probability then has 2 remaining free param-
eters, ~aj and ~bj. Once these are known, each error

probability has 2 remaining free parameters ~cðrÞj and ~dðrÞj .
Nonexponential decay under free evolution.—In this

section we study the free evolution of j1̄ 1̄i, post-selected
to the codespace of the four-qubit code. Our goal is to
observe how decoherence and fixed coupling terms
between transmons act on logical states, particularly in
the time interval immediately following fault-tolerant state
preparation. The experiments are analogous to decay and
spin-echo experiments on physical qubits.
Although we are working with encoded states, these

decay experiments do not demonstrate a fault-tolerant
memory. A fault-tolerant quantum memory would be
implemented in this context by repeated syndrome mea-
surements. Repeated syndrome measurements are not
feasible in this device due to both technical limitations
of measurement durations as well as exponentially decreas-
ing acceptance probability as a function of the number of
syndrome measurements. These limitations could be over-
come by implementing a quantum error correcting, rather
than error detecting, code and using a device that is
designed for fast, repeated readout. The smallest error-
correction experiments would currently require at least
7 qubits total [33], and small surface codes exist with
13 qubits total [34].
The results for the j1̄ 1̄i state, shown in Fig. 5, have

several features that are evidence of short-time protection

from local noise. First, the decay is nonexponential,
exhibiting a slow initial decay rate that increases with
time. The ideal functional form for either encoded qubit is

Pð1̄jacceptÞ ¼ ð2 − 2et=T1 þ e2t=T1Þ−1; ð4Þ
where we have assumed the same T1 for each qubit. A
crossover with the ideal physical decay curve Pð1Þ ¼
expð−t=T1Þ occurs at t ¼ T1 ln 2, which is on the order
of T1. Second, due to fault-tolerant state preparation, the
initial population is greater for the protected than the gauge
qubit in the presence of error.
To explain how the observed results for the j1̄ 1̄i state

differ from the ideal form, we construct a simplified model
of the logical decay incorporating errors in the initial state
and readout. The initial state is modeled as ρð0Þ ¼P

L1;L2;sz;sxpL1;L2;sz;sxρL1;L2;sz;sx , which is a 15 parameter
mixture of joint eigenstates ρL1;L2;sz;sz of Z̄L1, Z̄L2, Sx, and
Sz. The parameter values are assigned from state tomog-
raphy data. Each qubit of this state undergoes independent
amplitude damping described by the channel EγðρÞ ¼
A0ρA

†
0 þ A1ρA

†
1, where A0 ¼ j0ih0j þ ffiffiffiffiffiffiffiffiffiffi

1 − γ
p j1ih1j and

A1 ¼ ffiffiffi
γ

p j0ih1j. Each qubit has a different damping param-
eter γ ¼ 1 − e−t=T1 given by a value of T1 that is fitted to
experimental data. After damping, each qubit is projec-
tively measured in the computational basis. The readout
error process is modeled as an asymmetric binary channel
with crossover probabilities Pð0j1Þ and Pð1j0Þ. The cross-
over probabilities are assumed to be the same for each qubit
and fitted to the experimental data. Finally, the noisy
outcomes are postprocessed as described earlier.

FIG. 5. Encoded j1̄p1̄gi lifetime and acceptance probabi-
lity, Pð~0 ~0Þ. The ideal curve corresponds to Eq. (4), with
T1 ¼ 76.75 μs. Data for the encoded state is plotted with model
fits described in the text, with standard errors (statistical errors)
added in the inset. Relaxation times of the four data qubits
obtained from the model are T1ðiÞ ¼ f57; 84; 85; 81g μs with
i ∈ f1; 2; 3; 4g, which are within one standard deviation of the
mean T1 measured for each qubit [23]. The shaded region
contains the curves for each qubit from the values of T1ðiÞ
obtained from the model fit; p0 ¼ 0.05 and p1 ¼ 0.015 are
measurement errors from the fit. The Supplemental Material
contains jþ̄ þ̄i data [23].
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Conclusion.—We demonstrate that even in small code
lattices, fault-tolerant principles can result in short-time
protection from local dissipation, causing the free evolution
of postselected logical states to match and nearly outperform
the free evolution of physical qubits. Because of the fault-
tolerant circuit design, we observed that one of the two
encoded logical qubits has significantly reduced conditional
logical error. Additionally, we include quantum state tomog-
raphy data for prepared codewords, study error insertion, and
analyze the decay ofmeasured logical observables under free
evolution. The latter shows evidence of short-time protection
from local dissipation. A composite two-qubit gate, the four-
pulse echoed cross resonance gate, compensated for sys-
tematic phase errors during state preparation. This work,
which directly tests the fundamentals of small codes, is also
part of the broader effort to understand how noise propagates
in larger systems. Repeated stabilizer measurements are
needed to study time dependence of fault-tolerant storage.
Other experiments related to fault tolerance using the

[[4,2,2]] code with equivalent hardware on the Quantum
Experience have been recently reported [35].
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