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Animal aggregations are visually striking, and as such are popular examples of collective behavior in the
natural world. Quantitatively demonstrating the collective nature of such groups, however, remains
surprisingly difficult. Inspired by thermodynamics, we applied topological data analysis to laboratory
insect swarms and found evidence for emergent, material-like states. We show that the swarms consist of a
core “condensed” phase surrounded by a dilute “vapor” phase. These two phases coexist in equilibrium,
and maintain their distinct macroscopic properties even though individual insects pass freely between them.
We further define a pressure and chemical potential to describe these phases, extending theories of active
matter to aggregations of macroscopic animals and laying the groundwork for a thermodynamic description
of collective animal groups.
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Collective behavior of social animals is ubiquitous in the
natural world [1]. Birds [2,3], fish [4,5], insects [6,7], and
many other species [8] routinely and spontaneously form
aggregations that appear to possess an identity distinct from
that of the underlying individuals, so that they are some-
times termed “superorganisms” [9]. However, descriptions
of this kind are largely qualitative, and empirical character-
izations of true emergent properties of animal groups are
sparse [10–12]. Indeed, calling such groups “collective” at
all makes tacit assumptions about their nature, and suggests
that the group as a whole is somehow “more” than, or at
least different from, the sum of its individuals. But, to
paraphrase Williams [13], one must take care to distinguish
between a “fleet herd of deer” and a “herd of fleet deer,” or,
put another way, between “emergent” properties of the
group that have no meaning at the individual level and
“aggregate” properties that are simple statistical averages
over the individuals [14]. In some special cases, it is
straightforward to argue for collectivity; the social insects,
for example, cannot survive and reproduce outside a colony
[15]. But in general, demonstrating true collective, emer-
gent behavior is surprisingly difficult.
It is often assumed that animal groups outperform

individuals in accomplishing tasks due to the group
dynamics [16]. Thus, one way to show collectivity would
be to demonstrate this superior performance. Proving such
enhancement, however, is subtle and difficult [17,18], and
requires accurate knowledge of the task that is being
optimized [19]. An alternative route would be to follow
the prescriptions of condensed matter physics and directly
define emergent properties that describe the group as a
whole and are independent of the precise participants [20].
This is the approach taken, for example, in thermodynam-
ics, where state variables such as pressure, temperature, and
chemical potential, or response functions like viscosity or
elastic moduli can be defined and related for bulk materials

without direct appeal to a molecular description. Although
such ideas have recently begun to be applied to collective
behavior in animals [10–12], there is not yet a unified
“thermodynamic” theory.
In this Letter, we develop such a description for

laboratory mating swarms of the nonbiting midge
Chironomus riparius. From three-camera video measure-
ments of swarms of various sizes, we extracted the three-
dimensional time-resolved trajectories of each midge in the
swarm [6,21], as well as their velocities and accelerations.
Our methodology and the details of this data set have been
described previously [6,10,22]. Using persistent homology,
a topological data analysis method, we study the structure
of the swarms, and find that they can be segmented into two
distinct regions that we argue can be thought of as a
condensed phase surrounded by a vapor phase. Although
these phases have distinct macroscopic properties, midges
move freely between them, suggesting that they are true
collective, emergent states. Our results suggest powerful
new ways of thinking about collectivity in animal groups,
and help to bring macroscopic animal groups into the
purview of theories of active matter.
Since we seek global features of the swarms rather than a

detailed microscopic picture, we turned to topological data
analysis, since topology naturally captures gross structure.
Specifically, we used persistent homology [23–25]. This
method treats a collection of points, such as the midge
locations, as a discrete sampling of an underlying object. To
quantify the topological structure of this object, we create a
simplicial complex [24] from the discrete data points by
associating each one with a sphere of radius ϵ=2, where ϵ is
known as the proximity parameter. ϵ is a free parameter, but
one seeks topological features that persist over a range of ϵ,
as such features are likely to be meaningful. Simplicial
complexes can be quantified in terms of their Betti numbers
bi, where b0 gives the number of connected components in
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the complex, b1 the number of holes, b2 the number of
topological circles, and so on. Here, we focus only on b0,
the number of connected components. We note that in
practice there are many slightly different algorithmic ways
to construct simplicial complexes. Here, we used the
MATLAB implementation of JAVAPLEX [26] to construct
Vietoris-Rips complexes from our swarm data and analyze
their Betti numbers.
When ϵ is very small, all the insects will appear to be

isolated; thus, in that limit b0 ¼ N, whereN is the number of
individuals in the swarm. Likewise, when ϵ is very large, all
the insects will appear to be part of the same connected
component, and so b0 ¼ 1. In between, b0 varies smoothly
with ϵwith a shape that is independent ofN [Fig. 1(a)]. Asb0
decreases, however, the sizes of the connected components
do not uniformly increase. Instead, we typically observe a
single large cluster surrounded by small unconnected
components [Fig. 1(b)]. Unsurprisingly, this large cluster
lies in themiddle of the swarm [Fig. 1(c)], where the number
density ofmidges tends to be somewhat higher. These results
are insensitive to the particular value of ϵ chosen. And while
b0 fluctuates in time, we find that it is statistically stationary
and so focus on time-averaged quantities here.
Persistent homology thus identifies a topological struc-

ture in the swarm, suggesting that the core of the swarm and
its outer reaches are different. It cannot, however, tell us
how to interpret this structure. For that, we turn to a
statistical analysis of the physical variables. One might
expect, for example, to see a kinematic difference between
insects in the central cluster and the outer region. However,
both velocity and acceleration statistics are indistinguish-
able in the two regions [Figs. 2(a), 2(b)]. But when we
consider the number density and volume, the picture
changes. The number density n is significantly larger in
the central cluster than in the outer region [Fig. 2(c)], and,
moreover, conditional statistics show that the number
density in the central cluster is independent of the volume
of the outer region, and vice versa [Fig. 2(c)]. In addition,
the volume V occupied by the central cluster depends on
the number of midges in it, while the volume of the outer
region does not [Fig. 2(d)]. Similar results for other swarms
are shown in the Supplemental Material [27]. Taken
together, these results suggest that the central cluster and
the outer region are distinct entities, since their properties
are statistically independent, and that their properties are
independent of the constituent insects, since the kinematic
statistics are the same. Since, in addition, the volume of the
central cluster depends on the number of constituent
midges while the volume of the outer region does not
but simply adjusts to fill the available space, we borrow
terminology from thermodynamics and call the central
cluster a “condensed phase” and the outer region a “vapor
phase.” We note here, and discuss further below, that we
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FIG. 1. Topological analysis of swarm structure. (a) Time-
averaged zeroth Betti number hb0i normalized by the number of
insects in the swarm N for swarms with N ¼ 18, 22, 26, 30, 34,
38, and 42, as a function of the proximity parameter ϵ. The
standard error of the mean of the individual curves is less than
2%. Data from different swarms collapse when ϵ is scaled by its
value ϵI at the curve’s inflection point, indicating that the
topological structure of the swarms is preserved for different
swarm sizes. (b) The number of individuals per connected
component Nc for the largest (black) and second-largest (red)
components as a function of ϵ=ϵI . As ϵ=ϵI increases, the largest
component grows at the expense of the others. Solid lines indicate
the mean (over time) of the component size, and dotted lines the
standard deviation. (c) A snapshot from a single swarm with
N ¼ 38 individuals showing the largest connected component
(in red) computed for ϵ ¼ 1.5ϵI (corresponding to about 3 to 4
times the typical nearest-neighbor distance), which we also use
for all subsequent calculations. This connected component lies in
the center of the swarm. For ϵ ¼ 1.5ϵI, about half the midges
typically lie in the largest cluster; our subsequent results,
however, do not qualitatively depend on this choice.
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observe a continual exchange of individual insects between
these two phases, just as one would expect at a liquid-vapor
interface; the vapor phase, however, does not fill the entire
midge enclosure, but instead occupies a smaller, and
apparently self-regulated, region of space [6,22].
Thermodynamic phases are determined by more than

just their density or volume; other state variables are needed
to specify them completely. Defining such state variables
cannot in general be done from first principles for active
systems like insect swarms, due to the lack of conservation
laws and knowledge of the microscopic interactions
between individuals. We can, however, construct analogous
quantities that play the same role. Starting from the virial
relation, which we have shown holds for swarms [28], we
define a pressure (per unit mass) as

Π ¼ 1

NV

XN

i¼1

�
1

3
ðv2i þ ai · riÞ

�
; ð1Þ

where V is the volume of the phase, N is the number of
constituent individuals, vi is the velocity of insect i, ai is its
acceleration vector, and ri is its distance from the swarm
center. The acceleration term is motivated by our earlier

observations that insects in the swarm behave as if they are
trapped in a harmonic potential well [6,28], and captures the
work done (assuming the same mass for each insect) by a
midge as it accelerates in this potential. We note that this
formulation distinguishes our pressure from the classical
definition as the stress exerted by a material on its confining
walls [29], since our swarms, like most aggregations of
macroscopic animals, are unconfined; rather, it is concep-
tually akin to the recently proposed idea of “swim pressure”
[30,31]. Just as with number density and volume, the
condensed and vapor phases are clearly distinguishable
by their pressure statistics [Fig. 3(a)], and, as one would
expect, the vapor phase exists at amuch lower pressure. This
pressure depends on the midge number density n, but in
different ways for the two phases. In the condensed phase,
the pressure is well fit byΠ ¼ Anþ Bn2 for constant A and
B (Fig. 3(b) and Supplemental Material [27]), consistent
with a second-order virial expansion along an isotherm. In
thevapor phase,we observe behavior consistentwith power-
law scaling, and least-squares fits of the form Π ¼ Cnξ to
vapor-phase data for many swarms suggest that ξ ≈ 1=2
(Fig. 3(b) and Supplemental Material [27]).
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FIG. 2. Statistical characterization of the central cluster and outer region. (a) Probability density functions (PDFs) of midge speed v for
the inner region (red circles) and outer region (blue diamonds) for the same swarm shown in Fig. 1(c). (b) PDFs of the midge
accelerations for the inner and outer region. These kinematic statistics are nearly indistinguishable for the two regions. (c) Conditional
averages of the number density n on the volume V as a function of V for four combinations of variables: hninjV ini (red circles),
hnoutjVouti (blue diamonds), hninjVouti (magenta squares), and hnoutjV ini (black triangles). Note that using conditional medians rather
than conditional averages leads to nearly identical results. We define the volume V in as the volume of the convex hull of the midges in the
central cluster; the volume Vout is then the difference between the volume of the convex hull of the entire swarm and V in. n is much larger
in the inner region than the outer; and while n for each region depends on the volume of that region, it is nearly independent of the
volume of the other region. (d) Conditional averages of volume V on the number of midges N in each region for the corresponding
combinations hV injNini (brown stars), hVoutjNouti (green circles), hV injNouti (cyan diamonds), and hVoutjNini (purple squares). V in
depends strongly on the number of insects in the swarm, while any dependence of Vout on the number is much weaker. Similar results for
other swarms are shown in the Supplemental Material [27].
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Following further prescriptions of thermodynamics to
define other state variables via conservation of energy is not
possible, since energy is not conserved in active systems.
But we can, at least quasistatically, appeal to conservation
of mass, since the number of insects in the whole swarm
changes very slowly compared with any dynamical time
scale. We can thus define a chemical potential μ via [31]

n
∂μ
∂n ¼ ð1 − ϕÞ ∂Π∂n ; ð2Þ

where ϕ is the volume fraction of midges. Our swarms are
very dilute, with ϕ ≪ 1; that condition combined with the
measured dependence of Π on n allows us to integrate
Eq. (2) for each phase and calculate Δμ, the chemical
potential difference between the two phases, though only
up to a constant. In thermodynamics, two phases are
considered to be in equilibrium when the chemical potential
is uniform across the interface. In this case, since we only
know the chemical potentials up to a constant, phase
equilibrium would be indicated by a constant-in-time
Δμ. Consistently, we find that Δμ fluctuates about a
constant value with no temporal drift [Fig. 4(a)]. A more

stringent condition for phase equilibrium at the microscopic
level is detailed balance; in detailed balance, the likelihood
of an individual midge moving from the condensed to the
vapor phase would be the same as the likelihood of moving
from the vapor to the condensed phase. When we measure
the probability density functions of the transfer rates
between phases, we find that detailed balance is indeed
satisfied [Fig. 4(b)].
Our measurements provide strong evidence for two

distinct “thermodynamic” phases in our swarms that
coexist in equilibrium. These phases are true emergent
phenomena, as they are not defined based on differences in
the individual constituent midges and because individual
midges pass freely across the phase boundary without
changing the macroscopic properties of the phases. From a
physical standpoint, these results provide a link for con-
necting recent theoretical work on active microparticles
[29,31] to groups of macroscopic animals, and give us a
framework for describing collective animal groups in
nontrivial terms. Connecting collective behavior to thermo-
dynamics also provides new evidence for the possibility of
describing different kinds of group morphologies and
dynamics as simply different phases of some underlying
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FIG. 3. Pressure statistics. (a) PDFs of the pressure scaled by its
standard deviation σΠ for the condensed (red circles) and vapor
(blue diamonds) phases. The shape of the pressure PDFs is
qualitatively different in the two phases. (b) Conditional averages
of the absolute value of the pressure as a function of number
density for each phase. The dashed lines are fits of Π ¼ Cn1=2

(with constant C) for the vapor phase and Π ¼ Anþ Bn2 (with
constant A and B) for the condensed phase. Data for additional
swarms are shown in the Supplementary Material [27].
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FIG. 4. Evidence for equilibrium phase coexistence. (a) Time
series of the chemical potential difference Δμ between the vapor
and condensed phases. The red dashed line is the temporal mean.
(b) PDFs of the instantaneous transfer rate (in number of midges
per second) from vapor to condensed (black triangles) and
condensed to vapor (magenta squares) phases computed over
the full recording time for a single swarm. The two PDFs are
indistinguishable, demonstrating detailed balance.
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unified framework, an idea that has been suggested
previously [32] but has lacked a strong theoretical founda-
tion. Key next steps toward this goal will be the proper
definition of a temperaturelike variable for collective
groups (which is often fraught in nonequilibrium systems
[33]) and the construction of constitutive relations for
different kinds of animals. Finally, our results may also
have biological implications. The distinct and stable
properties of the swarm core and outer region may provide
a mechanism for the regulation of the swarm edge: an
individual midge may be able to recognize that it has
crossed the phase boundary, and that it is therefore time to
turn around to remain in the swarm.
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