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This Letter introduces unexpected diffusion properties in dense granular flows and shows that they
result from the development of partially jammed clusters of grains, or granular vortices. Transverse
diffusion coefficients D and average vortex sizes l are systematically measured in simulated plane shear
flows at differing inertial numbers I revealing (i) a strong deviation from the expected scaling D ∝ d2 _γ
involving the grain size d and shear rate _γ and (ii) an increase in average vortex size l at low I, following

l ∝ dI−
1
2 but limited by the system size. A general scaling D ∝ ld_γ is introduced that captures all the

measurements and highlights the key role of vortex size. This leads to establishing a scaling for the

diffusivity in dense granular flow as D ∝ d2
ffiffiffiffiffiffiffiffi
_γ=ti

p
involving the geometric average of shear time 1=_γ and

inertial time ti as the relevant time scale. Analysis of grain trajectories is further evidence that this diffusion
process arises from a vortex-driven random walk.
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Introduction.—Shear-induced diffusion underlies key
properties related to mixing, heat transfer, and rheology
of granular materials [1,2]. For instance, it counterbalances
size segregation in polydispersed granular flow down a
slope, thereby affecting the dynamics of landslides and
snow avalanches [3–5]. It also produces strong convective
heat fluxes across granular sheared layers [6].
In dense granular flows, shear-induced diffusion is

usually modeled by expressing a diffusivity D½m2=s� in
terms of the natural length and time scales, the grain size
d½m� and shear rate _γ½s−1� [1,2,7,8]:

D ∝ d2 _γ: ð1Þ
The typical grain trajectory leading to this scaling is a
random walk with a step of the order of d and random
changes in direction at a typical frequency _γ. However, the
internal kinematics of dense granular flows do not simply
follow such a random walk.
Firstly, the typical duration of grain rearrangement—or

plastic events—within the flows was shown to correspond
to a time scale ti ¼ d

ffiffiffiffiffiffiffiffi
ρ=P

p
, named inertial time, involving

the grain density ρ and the normal stress P. Dense granular
flows were found to correspond to small values of the
inertial number I ≪ 1, defined as [9,10]

I ¼ _γti: ð2Þ

Interestingly, small values of I implies that the time scale
for these grain rearrangements is much shorter than the
shear time, ti ≪ _γ−1. Secondly, grain kinematics in dense
granular flows may exhibit strong spatial correlations for
short periods of time [11–17]. Whether and how these
kinematic features could affect the diffusive property, in
particular the scaling (1) remains poorly explored.

The purpose of this Letter is to establish the scaling of
the diffusivity D in dense granular flows, and to identify its
origin in terms of internal kinematics.
Measuring shear-induced diffusion.—We used a discrete

element method to simulate plane shear flows in a
biperiodic domain prescribing both the shear rate _γ and
normal stress P [see Fig. 1(a)]. This flow geometry avoids
any stress gradient and walls, and thus produces homo-
geneous flows in which shear rate, shear and normal
stresses, and inertial number I are spatially constant.
This enables tracking grains diffusing across the shear
direction over long distances, while they always experience
the same flow conditions.
Simulated grains are disks in which the diameters are

uniformly distributed in the range of d� 20% in order to
avoid crystallization. They interact via dissipative, elastic,
and frictional contacts characterized by Young’s modulus
E ¼ 1000P, a normal coefficient of restitution e ¼ 0.5, and
a friction coefficient of 0.5 for frictional grains and 0 for
frictionless grains. In the dense regime, the value of E and e
do not significantly affect the flow properties [9].

(a) (b)

FIG. 1. (a) Plane shear geometry with biperiodic boundary
conditions (dashed lines). (b) Schematic of Delaunay triangula-
tion and computation of relative velocities for triplet of grains.
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This method was used to simulate flows of differing
inertial numbers within the range 7 × 10−4 ≤ I ≤ 5 × 10−1,
in systems of differing size in the range 20 ≤ H=d ≤ 120.
The numerical experiments start by randomly placing
grains with no contact. Then, normal stress P and shear
rate _γ are simultaneously applied until a steady state is
reached. All measurements reported below are performed
over a period of time of 25=_γ corresponding to 25 shear
deformations, after the flow has reached a steady state.
The primary quantity of interest in quantifying the

shear-induced diffusion is the mean square displacement
of grains across the shear direction, defined as hΔy2iðtÞ ¼
ð1=NÞPN

i¼1½yiðt ¼ 0Þ − yiðtÞ�2, where the sum runs on all
the grains in the shear cell. A normal-diffusive behavior,
such as induced by a 1d-random walk, would lead to a
mean square displacement increasing linearly with time,
hΔy2iðtÞ ¼ 2Dt. By contrast, grains moving up or down
at a constant speed v would lead to a quadratic scaling
hΔy2iðtÞ ¼ vt2, corresponding to a superdiffusive behavior.
Figures 2(a) and 2(b) show the time evolution of mean

square displacements for frictional and frictionless grains,
and for different values of the inertial number I. They
evidence the existence of a superdiffusive behavior until
flows undergo a fraction of shear deformations, followed
by a normal diffusive behavior at larger deformation—a
result consistent with previous observation [2,7,8,11].
Figure 2(c) shows the value of diffusivity D normalized
by d2=ti, obtained by fitting the mean square displacement
at larger deformations (t_γ > 2) by the function 2Dt. Thus
normalized, the scaling (1) would predict ðD=d2=tiÞ ∝ I.
By contrast, Fig. 2(c) reveals a significant breakdown

of the scaling (1) at low inertial numbers. Instead, three
regimes appear. At large I, the expected scaling (1) is
recovered, with D ≈ Ad2 _γ and A ≈ 0.13. For the lowest
values of inertial number, the scaling (1) is also recovered,
with D ≈ Bd2 _γ; however, it then involves a constant B
much greater than A, which seemingly increases linearly
with the system size [see inset of Fig. 2(c)]. For inter-
mediate inertial numbers, the scaling (1) is not valid. The
diffusivity is then no longer directly proportional to the
shear rate, for both frictional and frictionless grains.
These results show that the diffusivity at low inertial

number are significantly larger than the prediction of (1)
measured for high I. They further indicate that this
enhancement becomes more acute for systems with larger
width H.
Granular vortices length scale l.—Let us now seek to

rationalize the measured diffusivities by analyzing the grain
kinematics within the flows. One approach would be to
express diffusivity in terms of velocity fluctuations δv,
which leads to a scaling of the form D ∝ dδv. However, in
the Supplemental Material [18], we show that this scaling
cannot fully capture the diffusivity, with its prediction
getting worse for smaller systems and frictionless grains.
Instead, we introduce in the following an analysis based on

the existence and size of jammed clusters of grains, which
are hereafter referred to as granular vortices.
In this aim, we developed the following method to detect

vortices, involving two steps: (i) identifying at any point in
time triplets of neighboring grains considered kinemati-
cally jammed, and (ii) aggregating jammed triplets sharing
two common grains into a larger vortex. Triplets of
neighboring grains are identified using a Delaunay triangu-
lation. The criteria used to define whether a triplet is
jammed is based on the relative normal velocity of the three
pairs of grains jΔvkjmax ¼ maxðjΔvk12j; jΔvk13j; jΔvk23jÞ [see
Fig. 1(b)]. A triplet is considered kinematically jammed if
all three relative normal velocities are smaller than the

(a)

(b)

(c)

FIG. 2. Time evolution of mean square displacement hΔy2i for
different values of inertial number I for (a) frictional grains and
(b) frictionless grains (system size H=d ¼ 120). (c) Measured
diffusivityD versus inertial number I for systems of differing size
with H=d ¼ 20 (diamonds), 30 (triangles), 60 (circles), and 120
(squares). Hollow and filled symbols represent frictional and
frictionless grains, respectively. Inset: variation of the constant B
(see text) with different system size.
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average relative normal velocity hjΔvji between all pairs
of neighboring grains in the full system; i.e., triplet k is
jammed if jΔvkjmax < hjΔvji. The outputs of this method
include a list of vortices at any point in time, each being
comprised of a list of jammed grains. Snapshots of jammed
grains are shown in Figs. 3(a) and 3(b). Alternative vortex
detection methods and more details on the method used
here are discussed in the Supplemental Material at [18].
In order to quantify the average vortex size, we define a

correlation function gðrÞ measuring the probability that
two grains at a distance r belong to the same vortex.
gðrÞ is calculated using 100 randomly picked snapshots.
Figure 3(c)–(i) shows that, for smaller inertial numbers,
these correlation functions exhibit a higher tail, indicating a
higher probability of finding large clusters. The average
vortex size l is then deduced from gðrÞ as

l ¼
P

rðrþ dÞgðrÞP
rgðrÞ

: ð3Þ

The average on rþ d, rather than r is chosen to represent
the distance between the center of the two grains r plus
their outer halves d.
Figure 3(c) shows the average vortex size measured in

flows of differing inertial number I and widths H. At high
inertial numbers (I ≳ 0.1), it appears that the vortex size is
nearly constant and close to one grain size (l ≈ d). At
intermediate inertial numbers, it seemingly scales like

l
d
∝ I−

1
2: ð4Þ

It ultimately reaches a maximum value lmax at smaller
inertial numbers, which is proportional to the system size,
lmax ≈H=4. The scaling (4) and system size effects are
further highlighted in Fig. 3(c-ii). These observations
indicate that while vortices tend to grow as the inertial
number decreases, this growth is eventually limited by the
system size.
Scaling of diffusivity with l.—Figures 4(a) and 4(b) show

a collapse of the mean square displacements in the normal-
diffusive regime when plotted as a function of t_γl=d
instead of t_γ. Consistently, Fig. 4(c) shows a linear increase
of the ratio D=ðdl=tiÞ with the inertial number I, which
leads to the following scaling for the diffusivity:

D ∝ dl_γ: ð5Þ

This scaling captures all the measured diffusivities in
flows of differing inertial numbers I and width H.
Introducing the scaling (4) of the vortex size into (5)

leads to the following expression for the diffusivity:

D ∝ d2

ffiffiffi
_γ

ti

s
; ð6Þ

(a)

(b)

(c)

FIG. 3. Granular vortices. (a),(b) Snapshots illustrating granular vortices, i.e., triplets of kinematically jammed grains shown in
magenta for I ¼ 0.1 (a) and 0.001 (b) for H=d ¼ 120 system with frictional grains. (See Supplemental Material movies [18].) (c)
Average vortex size l versus inertial number I for frictional grains and frictionless grains in systems of differing size H. Symbols
represent the same configurations as those in Fig. 2(c). Inset (i): correlation function gðrÞmeasured in flows of differing inertial numbers
ranging from 0.5 to 0.001 for H=d ¼ 120 system with frictional grains. Inset (ii): same plot as (c) but rescaled with the system size H
and a power of inertial number.
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which applies when the vortex size is not limited by the
system size and involves the geometric average of the shear
time 1=_γ and inertial time ti. When the vortex size is limited
by the system size, i.e., when I ≲ ðd=HÞ2 according to
(4), the diffusivity would scale like D ∝ dlmax _γ ≈ dH_γ,
consistent with Fig. 2(c) (inset).
A vortex-induced random walk.—A random walk of step

s and frequency f would lead to a mean square displace-
ment exhibiting a superdiffusive behavior [hΔy2iðtÞ ¼
ðsfÞ2t2] at times shorter than f−1, reaching the value
hΔy2iðf−1Þ ¼ s2 at time f−1, and following a normal
diffusive behavior afterward [hΔy2iðtÞ ∝ 2s2ft]. This is
precisely the pattern evidenced in Figs. 4(a) and 4(b),
which show a transition from superdiffusive to

normal-diffusive behavior at time t ≈ ðd=l_γÞ, with a mean
square displacement reaching a value of approximately
ð0.3dÞ2. This suggests that grain trajectories in dense
granular flows follow a random walk of typical step
s ≈ 0.3d and frequency ðl=dÞ_γ, which may be orders of
magnitude higher than _γ.
This observation is consistent with a scenario involving

vortices of size l rotating at speed _γ for a short amount of
time [22]. Grains at the vortex periphery would then move
at an average speed l_γ and take a time d=ðl_γÞ to cover a
distance of the order of d, leading to the superdiffusive
regime. After this period of time, these grains would
become part of a different vortex which would make them
move in a different direction, producing a new step for the
random walk. This scenario points out a typical vortex
lifetime tv scaling like d=ðl_γÞ. In the dense regime, when
vortices are not affected by the system size, this vortex
lifetime can be expressed as

tv ∝
d
_γl

∝
ffiffiffi
ti
_γ

r
: ð7Þ

The diffusivity (6) can then be expressed as a function of
the vortex life time as

D ∝
d2

tv
: ð8Þ

Accordingly, one can interpret shear-induced diffusivity
in dense granular flow to arise from a random walk with a
step of the order of d, and with a frequency t−1v controlled
by the vortex lifetime rather than by the shear rate _γ. As a
result, during one shear deformation time (1=_γ) there will
be 1=ðtv _γÞ ¼ l=d number of vortex random steps, which
ultimately results in the enhancement of the diffusion. This
contrasts with Eq. (1) which assumes a single random step
per shear deformation.
Conclusion.—This study shows that the existence of

vortices greatly affects shear-induced diffusion in dense
granular flows. A key scaling law (5) is evidenced that
relates the diffusion D to the vortex size. This scaling law
could help rationalizing shear-induced diffusive behaviors
in other glassy materials such as dense suspensions [23],
Lennard-Jones glasses [24], foams [25], and emulsions
[26], which also exhibit correlated kinematics fields.
For unbounded dense granular flows, a second scaling

(4) is evidenced that relates the vortex size to the inertial
number. These two scalings indicate that the diffusivity is
then directly defined by the grain size and a geometric
average of the shear and inertial time, as in (6). This
expression can readily be used in continuum hydrodynamic
models of dense granular flows.
Finally, the analysis of the grain trajectory indicates that

granular vortices are short lived, with a typical lifetime
given by (7) that can be orders of magnitude shorter than

(a)

(b)

(c)

FIG. 4. Time evolution of mean square displacement hΔy2i for
different values of inertial number I for frictional grains (a) and
frictionless grains (b) of system size H=d ¼ 120. (c) Measured
diffusivity D versus inertial number I and vortex size l for
systems of differing size H. Dashed line represents the function
D=ðdl=tiÞ ¼ 0.08I. All the symbols represent the same con-
figurations as those in Fig. 2.
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the shear time. This time scale is reminiscent of velocity
autocorrelation decay time [27] and various rearrangement
time scales [28] measured in other glassy systems. Besides
explaining diffusive properties, this feature could help
rationalize rheological properties of dense granular flows
such as nonlocal behaviors [15,29].
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