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As first demonstrated by Tang and Cohen in chiral optics, the asymmetry in the rate of electromagnetic
energy absorption between left and right enantiomers is determined by an optical chirality density. Here, we
demonstrate that this effect can exist in magnetic spin systems. By constructing a formal analogy with
electrodynamics, we show that in antiferromagnets with broken chiral symmetry, the asymmetry in local
spin-wave energy absorption is proportional to a spin-wave chirality density, which is a direct counterpart
of optical zilch. We propose that injection of a pure spin current into an antiferromagnet may serve as a
chiral symmetry breaking mechanism, since its effect in the spin-wave approximation can be expressed in
terms of additional Lifshitz invariants. We use linear response theory to show that the spin current induces a
nonequilibrium spin-wave chirality density.
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Introduction.—Chirality describes mirror image sym-
metry or the lack thereof [1,2]. Circularly polarized light
provides a simple example. It has been known for a long
time that when circularly polarized light interacts with a
chiral molecule, the excitation rate is different for left and
right polarizations, leading to remarkable effects such as
natural optical activity and circular dichroism [3]. After
Lipkin’s discovery of a chirality conservation law for the
electromagnetic Maxwell equations [4], it was realized that
the electromagnetic field can be characterized by a locally
conserving chirality density that is odd under spatial
inversion (P) and even under time reversal (T ) trans-
formations. These symmetry properties are consistent with
Barron’s proposal of true chirality [5] that generalized the
original definition by Kelvin [2].
Tang and Cohen realized that in local light-matter

interactions of structured electromagnetic fields inside
materials with broken chiral symmetry, electromagnetic
chirality determines the asymmetry in the electromagnetic
energy absorption rate [1]. Later, Bliokh and Nori dem-
onstrated that chirality density in Ref. [1] is directly related
to polarization helicity and energy density [6]. Further
progress in understanding mutual relations between optical
helicity, duality symmetry, and spin angular momentum of
light was developed in Refs. [7–10]. These discoveries
paved the way for possible practical applications of chiral
electromagnetic fields in optics and plasmonics [11–14].
The purpose of this Letter is to demonstrate that this effect
can be found in some magnetic spin systems. We consider
the example of an antiferromagnetic material whose mag-
netic excitations—known as spin waves—can display some
key properties analogous to optical light [15].
Spin dynamics in antiferromagnets attracted consider-

able attention recently [16–32] from the perspective of

spintronics [33]. In this respect, noncentrosymmetric anti-
ferromagnets are especially interesting. Lack of the inver-
sion symmetry lifts the degeneracy between left- and right-
polarized spin waves inside such materials making possible
the observation of magnonic Nernst effects [34,35] or
development of spin-wave field effect transistor devices
[36]. Recently, an antiferromagnetic version of a chiral
magnetic effect was proposed [37], thus, establishing a link
between antiferromagnets and Weyl semimetals [38].
In this Letter, we examine the dynamics of antiferro-

magnetic spin-wave excitations and draw analogy with
electrodynamics. This allows us to generalize the method of
nongeometric symmetries, originally developed for the free
electromagnetic field [39], to antiferromagnetic spin waves.
Using this method, we find a conserving pseudoscalar,
which is equivalent to Lipkin’s zilch [4] in antiferromag-
netic materials and which we propose as a measure of
chirality for spin-wave excitations.
In order to observe spin-wave-chirality-related effects, the

chiral symmetry inside the material itself must be broken.
One possibility for such symmetry breaking is to consider
antiferromagnets with nonzero Lifshitz invariants [40–42].
Another way proposed in this Letter is to inject a pure spin
current, which lifts theP symmetry, at the same time, keeping
the T symmetry unbroken. Aswe discuss below, the effect of
spin current in the linear regime can be effectively expressed
in terms of induced Lifshitz invariants in the spin-wave
energy. We demonstrate that in such antiferromagnets with
spin-current-driven chirality, spin-wave chirality plays a role
similar to electromagnetic chirality [1] determining the
asymmetry in the spin-wave energy absorption rate with
respect to spin-current direction. We also show that on a
quantum level, our spin-wave chirality is proportional to the
difference between left- and right- polarized magnon
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numbers and propose a linear response theory for the spin-
current-induced nonequilibrium magnon chirality density.
Nongeometric symmetries.—We consider dissipative

magnetization dynamics in a uniaxial antiferromagnet
described by the semiclassical Landau-Lifshitz-Gilbert
equation

_Mi ¼ γMi ×Heff
i − ηMi × _Mi; ð1Þ

where γ is a gyromagnetic ratio, Mi denotes the magneti-
zation for the ith sublattice (i ¼ 1, 2), the effective fields
Heff

i ¼ −δW=δMi are determined by the magnetic energy
functionalW, and η is the Gilbert damping coefficient. The
energy dissipation is described by the Rayleigh dissipation
function

_W ¼ −
η

γ

Z
d3rð _M2

1 þ _M2
2Þ; ð2Þ

where η=γ > 0 [15].
In what follows, we consider a general form of the

magnetic energy

W ¼
Z

d3r
�
wa þ

δ

2
M1 ·M2 þ

αij
2
∇Mi · ∇Mj

�
; ð3Þ

where δ and αij are the exchange parameters, and wa ¼
−ðβ=2Þ½ðM1 · nÞ2 þ ðM2 · nÞ2� corresponds to the uniaxial
anisotropy energy density, where n is the unit vector along
the anisotropy axis. In what follows, we take αij ¼ α for
i ¼ j, and αij ¼ α0 otherwise. For β > 0, wa stabilizes
uniform antiferromagnetic ordering with M1 ¼ −M2 par-
allel to n [15].
In the spin-wave approximation, the equations of motion

are linearized by taking Miðt; rÞ ¼ ð−1Þiþ1Msnþmiðt; rÞ,
where Ms is the saturation magnetization. Transforming to
the momentum space miðt; rÞ ¼

R
d3p expðiprÞ ~miðt; pÞ

and keeping only linear terms in the complex ~m ¼ ~m1 þ
~m2 and ~l ¼ ~m1 − ~m2, we express the equations of motion in
the following form,

_~m ¼ −εlðpÞn × ~l þ ηn × _~l;

_~l ¼ −εmðpÞn × ~mþ ηn × _~m; ð4Þ
where εmðpÞ¼ γMs(δþβþðαþα0Þp2), εlðpÞ¼ γMs(βþ
ðα−α0Þp2), and p is the spin-wave wave vector.
For symmetry analysis of Eqs. (4), it is convenient

to use an analogue of the Silberstein-Bateman representa-
tion of Maxwell’s equations [43]. For this purpose, we
combine ~m and ~l into the six-component vector
ϕðt; pÞ ¼ ( ~mðt; pÞ; ~lðt; pÞ)T . The equation of motion for
ϕðt; pÞ can be written in the matrix form i∂tϕðt; pÞ ¼
Hϕðt; pÞ with

H ¼
 

0 −εlðpÞðŜ · nÞ
−εmðpÞðŜ · nÞ 0

!
; ð5Þ

where for the symmetry analysis we omitted the damping
terms. We introduce the spin-1 matrices ðŜαÞβγ ¼ −iϵαβγ
where ϵαβγ is the Levi-Cività symbol (α, β, γ ¼ x, y, z).
AlthoughH is not Hermitian, it can be easily symmetrized
by applying the momentum-dependent variable change
ϕ ¼ N ϕ̄, whereN ¼ diagðε−1=2m ; ε−1=2l Þ [44,45]. After this
transformation, the equation of motion acquires a
Schrödinger-like form

i∂tϕ̄ðt; pÞ ¼ H0ϕ̄ðt; pÞ; ð6Þ
where the Hermitian matrix H0 is given by the Cartesian
product H0 ¼ − ffiffiffiffiffiffiffiffiffi

εmεl
p

σ1 ⊗ ðŜ · nÞ, where σ1 is the Pauli
matrix.
Equation (6) has the form similar to the Silberstein-

Bateman representation of Maxwell’s equations in disper-
sive medium [43]. Transformation to the electrodynamics
is reached by replacing ϕ with ϕem ¼ ðE;BÞT composed
from the electric and magnetic field, and H0 with
Hem ¼ −ð ffiffiffiffiffi

εμ
p Þ−1σ2 ⊗ ðŜ · pÞ, where εðpÞ and μðpÞ are

the permittivity and permeability of the medium. Notably,
H0 and Hem share similar algebraic structure. The differ-
ence between them is related to their transformation
properties under T and P symmetries [46].
The analogy between spin-wave dynamics and electro-

dynamics allows us to generalize the symmetry analysis of
Maxwell’s equations to antiferromagnetic spin waves.
Similar to electrodynamics [39], the equations of motion
(6) are invariant under the eight-dimensional algebra of
nongeometric symmetries [39]. The basis elements of this
algebra are given by Q1 ¼ iσ2 ⊗ ðŜ · nÞD̂, Q2 ¼ σ1 ⊗ Î,
Q3 ¼ σ3 ⊗ ðŜ · nÞD̂, Q4 ¼ iσ2 ⊗ D̂, Q5 ¼ σ0 ⊗ ðŜ · nÞ,
Q6 ¼ σ3 ⊗ D̂, Q7 ¼ σ0 ⊗ Î, and Q8 ¼ σ1 ⊗ ðŜ · nÞ,
where D̂¼2½ðŜ·n⊥Þ2−Î3n2⊥�=n2⊥−ðŜ·nÞ2, n⊥ ¼ðn1;n2;0Þ,
Î3 ¼ diagð0; 0; 1Þ, and σ0 and Î denote two- and three-
dimensional unit matrices, respectively [47].
Some basis elements have clear interpretation. For

example, Q8, which is proportional to H≡ i∂t, represents
the symmetry with respect to taking the time derivative.
Q2 plays a role similar to the duality transformations
of the electromagnetic field [48,49]. It generates a
continuous symmetry transformation ~m → ~m cosh θ þffiffiffiffiffiffiffiffiffiffiffi
εl=εm

p
~l sinh θ and ~l → ~l cosh θ þ ffiffiffiffiffiffiffiffiffiffiffi

εm=εl
p

~m sinh θ for
any real parameter θ.
Spin-wave chirality conservation law.—From the exist-

ence of symmetry transformations, we can establish various
conservation laws, which can be conveniently written in
terms of bilinear forms

CA ¼ 1

2

Z
d3pϕ†ðt; pÞρQAϕðt; pÞ; ð7Þ

where ρ ¼ ðN −1Þ†N −1 is the measure that takes into
account the non-Hermitian character of H [50].
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Since the rotation symmetry with respect to the n
direction is unbroken, we can introduce spin-wave chirality
conservation associated with conservation of the operator
pnQ5 in Eq. (7), where pn ¼ p · n is the spin-wave
momentum component along n. The explicit form of this
conservation law in the momentum space is given by

Cχ ¼
i
2

Z
d3p½εmðpÞ ~m� · ðpn× ~mÞþ εlðpÞ~l� · ðpn× ~lÞ�: ð8Þ

This relation is an analogue of Lipkin’s zilch [4]. The
corresponding real space spin-wave chirality density can be
written as

ρχðt; rÞ ¼
1

2
ð_l · ∇nmþ _m ·∇nlÞ; ð9Þ

where ∇n ¼ n · ∇. In this case, the total chirality is
obtained by taking the volume integral Cχ ¼

R
d3rρχðt; rÞ.

In order to clarify the physical meaning of the spin-wave
chirality in Eqs. (8) and (9), we rewrite these equations in
terms of magnon operators. By applying the Holstein-
Primakoff transformation [51] for sublattice magnetizations

MðþÞ
1 ¼ ffiffiffiffiffiffiffiffiffi

2Ms
p

a, Mð−Þ
1 ¼ ffiffiffiffiffiffiffiffiffi

2Ms
p

a†, Mz
1 ¼ Ms − a†a and

MðþÞ
2 ¼ ffiffiffiffiffiffiffiffiffi

2Ms
p

b†, Mð−Þ
2 ¼ ffiffiffiffiffiffiffiffiffi

2Ms
p

b, Mz
2 ¼ −Ms þ b†b,

where a and b are bosonic operators combined with
Bogolyubov’s rotation ap ¼ aLp cosh θ − a†R−p sinh θ, and

b†−p ¼ a†R−p cosh θ − aLp sinh θ with tanh θ ¼ ðεm − εlÞ=
ðεm þ εl þ 2

ffiffiffiffiffiffiffiffiffi
εmεl

p Þ, the total magnon Hamiltonian can
be written in terms of left- (L) and right- (R) polarized
magnon number operators

Ĥ ¼ 1

2

X
p

ωpða†LpaLp þ a†RpaRpÞ; ð10Þ

where the energy dispersion ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εlðpÞεmðpÞ

p
is doubly

degenerated with respect to polarization directions [15]. In
terms of aLp and aRp, Cχ is determined by the difference in
numbers of L- and R-polarized magnons

Ĉχ ¼ 2
X
p

pnωpða†LpaLp − a†RpaRpÞ: ð11Þ

A similar expression for optical helicity and Lipkin’s zilch
in terms of the photon numbers has been known for a long
time [7,48,49,52–54].
Chiral symmetry breaking.—At this point, we have

established a chirality conservation law for spin waves
in antiferromagnets. We now discuss the consequences and
potential for observation and application.
We note that Cχ is odd under both transformations, P

and exchange of sublattices m1 ↔ m2 (M). Therefore, to
observe spin-wave-chirality-related effects, these sym-
metries should be broken inside the material. To break
the inversion symmetry, we may try to exploit the Doppler
shift of spin waves, which is formally reached by replace-
ment ∂t → ∂t − vs · ∇ in the equations of motion, where vs

is the velocity of the moving frame [20]. This effect was
observed in ferromagnetic metals under applied spin-
polarized current [55] and was proposed for antiferromag-
nets [20]. However, pure Doppler shift does not lift the
degeneracy between L- and R-polarized modes [28] and,
therefore, cannot induce chirality [see Fig. 1(a)].
To create chirality, we propose to realize two different

Doppler shifts for L- and R-polarized magnons in the
opposite directions, as schematically shown in Fig. 1(b),
which also breaks M symmetry. Below, we consider how
this situation can be experimentally realized. Here, we only
note that, formally, this can be achieved by two antiparallel
Galilean boosts for M1 and M2 sublattice magnetizations
[see Fig. 1(c)], which correspond to the transformation
∂t → ∂t ∓ vs∇n in Eq. (1), where the upper (lower) sign is
for M1 (M2), and we take vs parallel to n.
Applying the transformation ∂t → ∂t ∓ vs∇n to the

energy absorption rate in Eq. (2), we find that for spin
waves traveling in such medium, _W splits into symmetric
and asymmetric parts under P and M. The latter part is
proportional to the spin-wave chirality

_Wχ ¼
2ηvs
γ

Z
d3rð _m1 ·∇nm1− _m2 ·∇nm2Þ¼

2ηvs
γ

Cχ : ð12Þ

This result is the magnetic counterpart of the effect first
demonstrated in optics by Tang and Cohen [1].

(a)

(c)

(d)

(b)

FIG. 1. (a) Schematic picture of the Doppler shift for spin
waves with the energy dispersion ω ¼ csp. Both L- and R-
polarized magnon modes shift in the same direction. (b) Anti-
parallel Doppler shifts for L and Rmodes lift the degeneracy with
respect to polarization. (c) MagnetizationsM1 andM2 boosted in
the opposite directions by spin-current injection along n. (d) Pos-
sible experimental realization: charge current Jc is converted into
pure spin current Js in the material with large θSH (Pt) and
injected into the antiferromagnet (AF) across the interface.
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Experimental realization.— How do we experimentally
realize the antiparallel Galilean boosts forM1 andM2? For
this purpose, we invoke the spin-transfer torque (STT)
mechanism [32].
We consider pure spin current injected into the anti-

ferromagnet along the n direction [see Fig. 1(d)]. The
existence of spin current means that a portion of s↑ electrons
is flowing into the positive direction with the velocity vs,
while an equal amount of s↓ electrons drifts in the opposite
directions with −vs. If the entire antiferromagnet is in the
exchange-dominant regime [28], intersublattice electron
dynamics can be neglected, and s↑ (s↓) electrons couple
only to theM1 (M2) sublattice. In this case, these two sorts of
electrons are able to produce an adiabatic STT ontoM1 and
M2 pointing in the opposite directions via the Zhang-Li
mechanism [56]. In particular, s↑-electron flow produces the
torque T1 ¼ M−2

s M1 ×M1 × ðvs · ∇ÞM1 acting on M1,
while at the same time, s↓ electrons produce T2 ¼
−M−2

s M2 ×M2 × ðvs · ∇ÞM2 acting on M2, where vs ¼
μBjs=ðeMsÞ is proportional to the spin-current density js
(in electric units).
The spin current can be either injected from the metal

with large spin-Hall angle θSH (≈0.1 in Pt) or created inside
a metallic antiferromagnet with intrinsic spin-Hall effect
(e.g., θSH ≈ 0.06 in PtMn [57]). To estimate vs, we take
js ¼ θSHjc with jc ¼ 1012 A=m2 being the charge current
density previously used to observe STT effects in ferro-
magnets [55,58]. For θSH ¼ 0.1 andMs ¼ 3.5 × 105 A=m,
we obtain vs ¼ 33 m=s. We use this value below.
The effect of T1 and T2 on the spin-wave spectrum is

equivalent to the Doppler shifts of L- and R-polarized
modes in the opposite directions, as schematically
shown in Fig. 1(b) [47]. Spin-current injection lifts the
degeneracy with respect to helicity and turns the anti-
ferromagnet into chiral material with magnonic optical
activity and circular dichroism. The characteristic length
scale of the dichroism in a typical antiferromagnetic
insulator with linearly dispersing spin waves ωp ¼ csp
can be estimated as lCD ¼ c2s=ðηvsωÞ ≈ 5 mm, where we
take the spin-wave velocity cs ¼ 10 km=s, η ¼ 10−4, and
frequency ω=2π ¼ 1 THz.
In the spin-wave approximation, the effect of adiabatic

STT can be effectively described by the following Lifshitz
invariants in the spin-wave energy:

HDM¼ vs
2

Z
d3r½m1 · ð∇n×m1Þþm2 · ð∇n×m2Þ�: ð13Þ

In the lattice-model language, this expression corresponds
to the monoaxial Dzyaloshinskii-Moriya (DM) interaction
between the next-nearest-neighboring sites with effective
strength Deff ¼ ℏ2γvs=ðMsa4Þ, which can be estimated as
ℏvs=a ≈ 0.5 K for jc ¼ 1012 A=m2, where a is the lattice
constant. This situation partly resembles spin-current-
induced DM interaction in ferromagnets with Rashba

coupling [59]. Recently, next-nearest-neighboring DM
interactions attracted attention in view of the magnonic
Nernst effect in antiferromagnets [34,35].
Linear response.—The amount of spin-wave chirality

induced by the spin current can be estimated using the linear
response theory. For this purpose, we treat HDM as a
perturbation to the magnon Hamiltonian in Eq. (10). The
spin-wave chirality density can be calculated using theKubo
formula [60]

hρχi ¼ −i
Z

t

−∞
dt0e−sðt−t0Þh½ρ̂χðtÞ; ĤDMðt0Þ�i; ð14Þ

where the average is taken with the equilibrium density
matrix ρ̂0 ¼ expð−Ĥ=kBTÞ, s → 0þ, and the operators ρ̂χ
and ĤDM are obtained from Eqs. (9) and (13) by the
Holstein-Primakoff transformation [47].
Straightforward calculations show that the total spin-

current-induced chirality at the temperature T is obtained as
follows [47]:

Cχ ¼ −2vs
X
p

∂np
∂ωp

p2
n½εmðpÞ þ εlðpÞ�; ð15Þ

where np ¼ ( expðωp=kBTÞ − 1)−1 is the equilibrium
magnon distribution. For linearly dispersing magnons, this
expression can be integrated explicitly, providing Cχ ¼
4π2vsℏΩexðkBTÞ4=ð45c5sÞ, where Ωex ¼ γMsδ is the
exchange frequency.
To characterize the asymmetry created by the spin

current, we propose to normalize the induced chirality
in Eq. (15) on the total contribution to Cχ from the
magnons with positive chirality at the thermal equilibrium
Cþ ¼Ppn>0ωppnha†LpaLp þ a†R−paR−pi. Without spin cur-
rent, this amount of chirality is compensated by exactly the
same number of magnons with negative chirality providing
Cχ ¼ 0. Therefore, we can introduce a dimensionless
parameter g ¼ Cχ=Cþ that can be interpreted as an amount
of degeneracy lifted by the spin current. For magnons with
linear dispersion, we can estimate this quantity as [47]

g ¼ k
vs
cs

ℏΩex

kBT
; ð16Þ

where k ≈ 0.69. In a typical antiferromagnetic insulator
with cs ¼ 10 km=s and Ωex=2π ¼ 10 THz, we estimate
g ≈ 0.3% at room temperatures for jc ¼ 1012 A=m2.
Summary.—The symmetry analysis for spin-wave

dynamics in antiferromagnets has been developed by
drawing an analogy with Maxwell’s equations. The con-
servation law for the spin-wave chirality has been estab-
lished. This quantity, which has been determined by the
difference in numbers of left- and right-polarized magnons,
is directly related to Lipkin’s zilch in electrodynamics [4]. In
this respect, we would like to mention Refs. [6,7] relevance
to recent discussions of magnon spin current [30,31,35,36].
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We also note that our symmetry approach has a potential
extension to coupled magneto-optical excitations in anti-
ferromagnets [61].
Pure spin current in antiferromagnets can lift the degen-

eracywith respect to polarization. In this situation, spin-wave
chirality determines the asymmetry in the spin-wave energy
absorption rate, similar to its twin optical effect [1]. The
efficiency of the spin current is determined by the ratio
vs=cs, which can reach 10−3 for current densities jc ¼
1011–1012 A=m2. Such current densities were previously
used to observe the Doppler shift of spin waves in ferro-
magnets [55]. The experiments can be probed in thin-
film interfaces of antiferromagnetic insulator and nonmag-
netic metal (for example, spin current generated by the
spin-Hall effect across Pt/NiO interface was used in
Ref. [62]) or in metallic antiferromagnets with intrinsic
spin-Hall effect [57,63].

This work was supported by the Government of the
Russian Federation Program No. 02.A03.21.0006, by the
Ministry of Education and Science of the Russian
Federation, Grant No. MK-6230.2016.2, by the Japan
Society for the Promotion of Science (JSPS) KAKENHI
Grants No. 25287087, No. 17H02929, No. 17H02767, and
No. 25220803, and JSPS Core-to-Core Program A,
Advanced Research Networks, by the Engineering and
Physical Sciences Research Council (EPSRC) Grant
No. EP/M024423, by the Russian Foundation for Basic
Research (RFBR), Grant No. 17-52-371 500131, and by
the Foundation for the Advancement of Theoretical Physics
“BASIS” Grant No. 17-11-107.

*iprosk@ouj.ac.jp
[1] Y. Tang andA. E. Cohen, Optical Chirality and Its Interaction

with Matter, Phys. Rev. Lett. 104, 163901 (2010).
[2] L. Kelvin, Baltimore Lectures on Molecular Dynamics and

the Wave Theory of Light (CJ Clay & Sons, London, 1904).
[3] L. D. Barron,Molecular Light Scattering andOptical Activity

(Cambridge University Press, Cambridge, England, 2004).
[4] D. M. Lipkin, Existence of a new conservation law in

electromagnetic theory, J. Math. Phys. 5, 696 (1964).
[5] L. D. Barron, True and false chirality and parity violation,

Chem. Phys. Lett. 123, 423 (1986).
[6] K. Y. Bliokh and F. Nori, Characterizing optical chirality,

Phys. Rev. A 83, 021803 (2011).
[7] M.M. Coles and D. L. Andrews, Chirality and angular mo-

mentum in optical radiation, Phys. Rev. A 85, 063810 (2012).
[8] R. P. Cameron, S. M. Barnett, and A. M. Yao, Optical

helicity, optical spin and related quantities in electromag-
netic theory, New J. Phys. 14, 053050 (2012).

[9] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Dual electro-
magnetism: Helicity, spin, momentum and angular momen-
tum, New J. Phys. 15, 033026 (2013).

[10] K. Y. Bliokh, Y. S. Kivshar, and F. Nori, Magnetoelectric
Effects in Local Light-Matter Interactions, Phys. Rev. Lett.
113, 033601 (2014).

[11] E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V.
Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron,
N. Gadegaard, and M. Kadodwala, Ultrasensitive detection
and characterization of biomolecules using superchiral
fields, Nat. Nanotechnol. 5, 783 (2010).

[12] Y. Tang and A. E. Cohen, Enhanced enantioselectivity in
excitation of chiral molecules by superchiral light, Science
332, 333 (2011).

[13] E.Hendry,R. V.Mikhaylovskiy,L. D.Barron,M.Kadodwala,
and T. J. Davis, Chiral electromagnetic fields generated by
arrays of nanoslits, Nano Lett. 12, 3640 (2012).

[14] A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T.W.
Ebbesen, Mechanical separation of chiral dipoles by chiral
light, New J. Phys. 15, 123037 (2013).

[15] A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin
Waves (North-Holland Publishing Company, Amsterdam,
1968).

[16] A. S. Núñez, R. A. Duine, P. Haney, and A. H. MacDonald,
Theory of spin torques and giant magnetoresistance in
antiferromagnetic metals, Phys. Rev. B 73, 214426 (2006).

[17] P. M. Haney and A. H. MacDonald, Current-Induced Tor-
ques Due to Compensated Antiferromagnets, Phys. Rev.
Lett. 100, 196801 (2008).

[18] H. V. Gomonay and V. M. Loktev, Spin transfer and current-
induced switching in antiferromagnets, Phys. Rev. B 81,
144427 (2010).

[19] K. M. D. Hals, Y. Tserkovnyak, and A. Brataas, Phenom-
enology of Current-Induced Dynamics in Antiferromagnets,
Phys. Rev. Lett. 106, 107206 (2011).

[20] A. C. Swaving and R. A. Duine, Current-induced torques in
continuous antiferromagnetic textures, Phys. Rev. B 83,
054428 (2011).

[21] R. Cheng and Q. Niu, Electron dynamics in slowly varying
antiferromagnetic texture, Phys. Rev. B 86, 245118 (2012).

[22] H. V. Gomonay, R. V. Kunitsyn, and V. M. Loktev, Sym-
metry and the macroscopic dynamics of antiferromagnetic
materials in the presence of spin-polarized current, Phys.
Rev. B 85, 134446 (2012).

[23] E. G. Tveten, A. Qaiumzadeh, O. A. Tretiakov, and A.
Brataas, Staggered Dynamics in Antiferromagnets by
CollectiveCoordinates, Phys. Rev. Lett. 110, 127208 (2013).

[24] S. Takei, B. I. Halperin, A. Yacoby, and Y. Tserkovnyak,
Superfluid spin transport through antiferromagnetic insula-
tors, Phys. Rev. B 90, 094408 (2014).

[25] R. Cheng, J. Xiao, Q. Niu, and A. Brataas, Spin Pumping
and Spin-Transfer Torques in Antiferromagnets, Phys. Rev.
Lett. 113, 057601 (2014).

[26] R. Cheng and Q. Niu, Dynamics of antiferromagnets driven
by spin current, Phys. Rev. B 89, 081105 (2014).

[27] S. Takei, T. Moriyama, T. Ono, and Y. Tserkovnyak,
Antiferromagnet-mediated spin transfer between a metal
and a ferromagnet, Phys. Rev. B 92, 020409 (2015).

[28] Y. Yamane, J. Ieda, and J. Sinova, Spin-transfer torques in
antiferromagnetic textures: Efficiency and quantification
method, Phys. Rev. B 94, 054409 (2016).

[29] R. Khymyn, I. Lisenkov, V. S. Tiberkevich, A. N. Slavin,
and B. A. Ivanov, Transformation of spin current by anti-
ferromagnetic insulators, Phys. Rev. B 93, 224421 (2016).

[30] S. M. Rezende, R. L. Rodríguez-Suárez, and A. Azevedo,
Theory of the spin Seebeck effect in antiferromagnets, Phys.
Rev. B 93, 014425 (2016).

PRL 119, 177202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

27 OCTOBER 2017

177202-5

https://doi.org/10.1103/PhysRevLett.104.163901
https://doi.org/10.1063/1.1704165
https://doi.org/10.1016/0009-2614(86)80035-5
https://doi.org/10.1103/PhysRevA.83.021803
https://doi.org/10.1103/PhysRevA.85.063810
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1038/nnano.2010.209
https://doi.org/10.1126/science.1202817
https://doi.org/10.1126/science.1202817
https://doi.org/10.1021/nl3012787
https://doi.org/10.1088/1367-2630/15/12/123037
https://doi.org/10.1103/PhysRevB.73.214426
https://doi.org/10.1103/PhysRevLett.100.196801
https://doi.org/10.1103/PhysRevLett.100.196801
https://doi.org/10.1103/PhysRevB.81.144427
https://doi.org/10.1103/PhysRevB.81.144427
https://doi.org/10.1103/PhysRevLett.106.107206
https://doi.org/10.1103/PhysRevB.83.054428
https://doi.org/10.1103/PhysRevB.83.054428
https://doi.org/10.1103/PhysRevB.86.245118
https://doi.org/10.1103/PhysRevB.85.134446
https://doi.org/10.1103/PhysRevB.85.134446
https://doi.org/10.1103/PhysRevLett.110.127208
https://doi.org/10.1103/PhysRevB.90.094408
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1103/PhysRevLett.113.057601
https://doi.org/10.1103/PhysRevB.89.081105
https://doi.org/10.1103/PhysRevB.92.020409
https://doi.org/10.1103/PhysRevB.94.054409
https://doi.org/10.1103/PhysRevB.93.224421
https://doi.org/10.1103/PhysRevB.93.014425
https://doi.org/10.1103/PhysRevB.93.014425


[31] S. M. Rezende, R. L. Rodríguez-Suárez, and A. Azevedo,
Diffusive magnonic spin transport in antiferromagnetic
insulators, Phys. Rev. B 93, 054412 (2016).

[32] M.W. Daniels, W. Guo, G. Malcolm Stocks, D. Xiao, and
J. Xiao, Spin-transfer torque induced spin waves in anti-
ferromagnetic insulators, New J. Phys. 17, 103039 (2015).

[33] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich,
Antiferromagnetic spintronics, Nat. Nanotechnol. 11, 231
(2016).

[34] R. Cheng, S. Okamoto, and D. Xiao, Spin Nernst Effect of
Magnons in Collinear Antiferromagnets, Phys. Rev. Lett.
117, 217202 (2016).

[35] V. A. Zyuzin and A. A. Kovalev, Magnon Spin Nernst Effect
in Antiferromagnets, Phys. Rev. Lett. 117, 217203 (2016).

[36] R. Cheng, M.W. Daniels, J.-G. Zhu, and D. Xiao, Anti-
ferromagnetic spin wave field-effect transistor, Sci. Rep. 6,
24223 (2016).

[37] A. Sekine and K. Nomura, Chiral Magnetic Effect and
Anomalous Hall Effect in Antiferromagnetic Insulators with
Spin-Orbit Coupling, Phys. Rev. Lett. 116, 096401 (2016).

[38] A. A. Zyuzin and A. A. Burkov, Topological response in
Weyl semimetals and the chiral anomaly, Phys. Rev. B 86,
115133 (2012).

[39] W. I. Fushchich and A. G. Nikitin, Symmetries of Maxwell’s
Equations, Mathematics and Its Applications (Springer,
Amsterdam, 1987).

[40] L. Benfatto and M. B. Silva Neto, Field dependence of
the magnetic spectrum in anisotropic and Dzyaloshinskii-
Moriya antiferromagnets. I. Theory, Phys. Rev. B 74,
024415 (2006).

[41] L. Udvardi and L. Szunyogh, Chiral Asymmetry of the
Spin-Wave Spectra in Ultrathin Magnetic Films, Phys. Rev.
Lett. 102, 207204 (2009).

[42] M.M. Odashima, A. Marmodoro, P. Buczek, A. Ernst, and
L. Sandratskii, Chirality-dependent magnon lifetime in a
compensated half-metallic ferrimagnet, Phys. Rev. B 87,
174420 (2013).

[43] I. Bialynicki-Birula, V photon wave function, Prog. Opt. 36,
245 (1996).

[44] M. G. Silveirinha, z2 topological index for continuous
photonic materials, Phys. Rev. B 93, 075110 (2016).

[45] S. Ali Hassani Gangaraj, M. G. Silveirinha, and G.W.
Hanson, Berry phase, Berry connection, and Chern number
for a continuum bianisotropic material from a classical
electromagnetics perspective, IEEE J. Multiscale Multiphys.
Comput. Technol. 2, 3 (2017).

[46] For example, under T symmetry, ϕem transforms as
T ϕem → σ3ϕem, since the electric (magnetic) field is T
even (T odd). In contrast, T ϕ → −ϕ. This means that to
transform from spin-wave dynamics to electrodynamics,
one has to replace σ1 inH0 with σ2 ¼ iσ1σ3 to comply with
the T and P invariance.

[47] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.119.177202 for techni-
cal details.

[48] M. G. Calkin, An invariance property of the free electro-
magnetic field, Am. J. Phys. 33, 958 (1965).

[49] D. Zwanziger, Quantum field theory of particles with both
electric and magnetic charges, Phys. Rev. 176, 1489 (1968).

[50] I. Proskurin, A. S. Ovchinnikov, P. Nosov, and J.-i. Kishine,
Optical chirality in gyrotropic media: Symmetry approach,
New J. Phys. 19, 063021 (2017).

[51] S. M. Rezende and R. M. White, Multimagnon theory of
antiferromagnetic resonance relaxation, Phys. Rev. B 14,
2939 (1976).

[52] R. F. O’Connell and D. R. Tompkins, Physical interpretation
of generalized conservation laws, Nuovo Cimento 39, 391
(1965).

[53] G. N. Afanasiev and Yu. P. Stepanovsky, The helicity of the
free electromagnetic field and its physical meaning, Nuovo
Cimento Soc. Ital. Fis. 109A, 271 (1996).

[54] J. L. Trueba and A. F. Ranada, The electromagnetic helicity,
Eur. J. Phys. 17, 141 (1996).

[55] V. Vlaminck and M. Bailleul, Current-induced spin-wave
Doppler shift, Science 322, 410 (2008).

[56] S. Zhang and Z. Li, Roles of Nonequilibrium Conduction
Electrons on the Magnetization Dynamics of Ferromagnets,
Phys. Rev. Lett. 93, 127204 (2004).

[57] W. Zhang, M. B. Jungfleisch, W. Jiang, J. E. Pearson,
A. Hoffmann, F. Freimuth, and Y. Mokrousov, Spin Hall
Effects in Metallic Antiferromagnets, Phys. Rev. Lett. 113,
196602 (2014).

[58] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T.
Shinjo, Real-Space Observation of Current-Driven Domain
Wall Motion in Submicron Magnetic Wires, Phys. Rev. Lett.
92, 077205 (2004).

[59] T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara,
Dzyaloshinskii-Moriya Interaction as a Consequence of a
Doppler Shift Due to Spin-Orbit-Induced Intrinsic Spin
Current, Phys. Rev. Lett. 116, 247201 (2016).

[60] G. D. Mahan, Many-Particle Physics (Springer Science &
Business Media, New York, 2013).

[61] T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda,
H. Ueda, Y. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig,
Spin Oscillations in Antiferromagnetic NiO Triggered by
Circularly Polarized Light, Phys. Rev. Lett. 105, 077402
(2010).

[62] W. Lin and C. L. Chien, Electrical Detection of Spin
Backflow from an Antiferromagnetic Insulator=Y3Fe5O12

Interface, Phys. Rev. Lett. 118, 067202 (2017).
[63] J. Sklenar, W. Zhang, M. B. Jungfleisch, W. Jiang, H.

Saglam, J. E. Pearson, J. B. Ketterson, and A. Hoffmann,
Spin Hall effects in metallic antiferromagnets—Perspectives
for future spin-orbitronics, AIP Adv. 6, 055603 (2016).

PRL 119, 177202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

27 OCTOBER 2017

177202-6

https://doi.org/10.1103/PhysRevB.93.054412
https://doi.org/10.1088/1367-2630/17/10/103039
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1103/PhysRevLett.117.217202
https://doi.org/10.1103/PhysRevLett.117.217202
https://doi.org/10.1103/PhysRevLett.117.217203
https://doi.org/10.1038/srep24223
https://doi.org/10.1038/srep24223
https://doi.org/10.1103/PhysRevLett.116.096401
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.74.024415
https://doi.org/10.1103/PhysRevB.74.024415
https://doi.org/10.1103/PhysRevLett.102.207204
https://doi.org/10.1103/PhysRevLett.102.207204
https://doi.org/10.1103/PhysRevB.87.174420
https://doi.org/10.1103/PhysRevB.87.174420
https://doi.org/10.1016/S0079-6638(08)70316-0
https://doi.org/10.1016/S0079-6638(08)70316-0
https://doi.org/10.1103/PhysRevB.93.075110
https://doi.org/10.1109/JMMCT.2017.2654962
https://doi.org/10.1109/JMMCT.2017.2654962
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.177202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.177202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.177202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.177202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.177202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.177202
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.177202
https://doi.org/10.1119/1.1971089
https://doi.org/10.1103/PhysRev.176.1489
https://doi.org/10.1088/1367-2630/aa6acd
https://doi.org/10.1103/PhysRevB.14.2939
https://doi.org/10.1103/PhysRevB.14.2939
https://doi.org/10.1007/BF02814297
https://doi.org/10.1007/BF02814297
https://doi.org/10.1007/BF02731014
https://doi.org/10.1007/BF02731014
https://doi.org/10.1088/0143-0807/17/3/008
https://doi.org/10.1126/science.1162843
https://doi.org/10.1103/PhysRevLett.93.127204
https://doi.org/10.1103/PhysRevLett.113.196602
https://doi.org/10.1103/PhysRevLett.113.196602
https://doi.org/10.1103/PhysRevLett.92.077205
https://doi.org/10.1103/PhysRevLett.92.077205
https://doi.org/10.1103/PhysRevLett.116.247201
https://doi.org/10.1103/PhysRevLett.105.077402
https://doi.org/10.1103/PhysRevLett.105.077402
https://doi.org/10.1103/PhysRevLett.118.067202
https://doi.org/10.1063/1.4943758

